Na+ ion migration on the surface of reduced graphene oxide

被引:1
作者
Banerjee, Moutusi [1 ]
Chakravorty, Dipankar [2 ]
Saha, Shyamal K. [1 ]
机构
[1] Indian Assoc Cultivat Sci, Dept Mat Sci, Kolkata 700032, India
[2] Indian Assoc Cultivat Sci, MLS Prof Unit, Kolkata 700032, India
关键词
reduced graphene oxide; sodium ion conductor; relaxation; activation energy; FUNCTIONALIZED GRAPHENE; BATTERIES; INTERCALATION; CHEMISTRY;
D O I
10.1088/1361-6463/aacfbf
中图分类号
O59 [应用物理学];
学科分类号
摘要
The increasing demand of soditum ion batteries (SIBs) remarkably accelerates the study of solid-state sodium ion conductors due to their potential application as solid-state electrolytes in SIBs. In the present work, the sodium ion is attached to reduced graphene oxide (rGO) to realize a soditum ion conductor. Tuning the activation energy of migration for Na+ and Li+ ions on rGO surface is investigated by varying the concentration of both ions. The lowest values of activation energies for Na+ and Li+ conduction are found to be 0.28 eV and 0.37 eV, respectively. It is seen that the activation energy of migration of the Na+ ion is smaller than that of the Li+ ion. The lower positive charge density of Na+ compared to Li+ causes this lowering of activation energy in Na+ due to the comparatively weak cation-pi interaction between the Na+ ion and the carbon hexagon. From the relaxation study, the relaxation exponent (beta) value of the Na+ ion is found to be smaller than that of the Li+ ion. This deviation from Debye-type relaxation behavior of the Na+ ion also agrees well with the decreasing value of activation energy as mentioned above. We hope that this study will aid the design of ion conductors for solid-state SIBs.
引用
收藏
页数:7
相关论文
共 30 条
  • [21] Kaneko T., Saito R., Surf. Sci., 665, (2017)
  • [22] Banerjee M., Gupta A., Saha S.K., Chakravorty D., Small, 11, (2015)
  • [23] Garrido R.B., De Miguel M., Carbo A.D., Alvaro M., Garcia H., Chem. Commun., 49, (2013)
  • [24] Marcano D.C., Kosynkin D.V., Berlin J.M., Sinitskii A., Sun Z., Slesarev A., Alemany L.B., Lu W., Tour J.M., ACS Nano, 4, (2010)
  • [25] Dinda D., Gupta A., Saha S.K., J. Mater. Chem., 1, (2013)
  • [26] Kudin K.N., Ozbas B., Schniepp H.C., Prud'Homme R.K., Aksay I.A., Car R., Nano Lett., 8, (2008)
  • [27] Zhang Y., Ma H.-L., Zhang Q., Peng J., Li J., Zhai M., Yu Z.-Z., J. Mater. Chem., 22, (2012)
  • [28] Dreyer D.R., Park S., Bielawski C.W., Ruoff R.S., Chem. Soc. Rev., 39, (2010)
  • [29] Gupta H., Balo Shalu L., Singh V.K., Chaurasia S.K., Singh R.K., RSC Adv., 6, (2016)
  • [30] Ngai K.L., Rendell R.W., Rajagopal A.K., Ann. New York Acad. Sci., 484, (1986)