Nonlinear filtering: Interacting particle resolution

被引:93
|
作者
DelMoral, P
机构
来源
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE | 1997年 / 325卷 / 06期
关键词
D O I
10.1016/S0764-4442(97)84778-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this Note, we study interacting particle approximations of discrete time and measure valued dynamical systems. Such systems have arisen in such diverse Scientific disciplines as in Propagation of Chaos Theory (see [12] and [19]), and in Nonlinear Filtering Theory. The main contribution of this Note is to prove the convergences to the optimal filter of such approximations, yielding what seemed to be the first mathematically well-founded convergence results for such approximations of the nonlinear filtering equations. This new treatment was influenced primarily by the development of genetic algorithms (see [16] and [3]), and secondarily by the papers of H. Kunita and L. Stettner, [17] and [18] respectively.
引用
收藏
页码:653 / 658
页数:6
相关论文
共 50 条
  • [21] New Grid for Particle Filtering of Multivariable Nonlinear Objects
    Kozierski, Piotr
    Michalski, Jacek
    Sadalla, Talar
    Giernacki, Wojciech
    Zietkiewicz, Joanna
    Drgas, Szymon
    PROCEEDINGS OF THE 2018 FEDERATED CONFERENCE ON COMPUTER SCIENCE AND INFORMATION SYSTEMS (FEDCSIS), 2018, : 1073 - 1077
  • [22] MultiPDF particle filtering in state estimation of nonlinear objects
    Michalski, Jacek
    Kozierski, Piotr
    Giernacki, Wojciech
    Zietkiewicz, Joanna
    Retinger, Marek
    NONLINEAR DYNAMICS, 2021, 106 (03) : 2165 - 2182
  • [23] Particle Filtering for State Estimation in Nonlinear Industrial Systems
    Rigatos, Gerasimos G.
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2009, 58 (11) : 3885 - 3900
  • [24] A branching particle system approximation for nonlinear stochastic filtering
    HuiLi Liu
    Jie Xiong
    Science China Mathematics, 2013, 56 : 1521 - 1541
  • [25] Nonlinear statistical signal processing: A particle filtering approach
    Candy, J. V.
    IMAGING FOR DETECTION AND IDENTIFICATION, 2007, : 129 - 150
  • [26] Combined Particle and Smooth Innovation Filtering for Nonlinear Estimation
    Hilal, W.
    Gadsden, S. A.
    Wilkerson, S. A.
    Al-Shabi, M.
    SIGNAL PROCESSING, SENSOR/INFORMATION FUSION, AND TARGET RECOGNITION XXXI, 2022, 12122
  • [27] A branching particle system approximation for nonlinear stochastic filtering
    Liu HuiLi
    Xiong Jie
    SCIENCE CHINA-MATHEMATICS, 2013, 56 (08) : 1521 - 1541
  • [28] A Particle Filtering Approach to Change Detection for Nonlinear Systems
    Babak Azimi-Sadjadi
    P. S. Krishnaprasad
    EURASIP Journal on Advances in Signal Processing, 2004
  • [29] A branching particle system approximation for nonlinear stochastic filtering
    LIU HuiLi
    XIONG Jie
    ScienceChina(Mathematics), 2013, 56 (08) : 1525 - 1545
  • [30] Hybrid Differential Evolution Particle Filter for Nonlinear Filtering
    Zhang, Chaozhu
    Li, Lin
    APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY JOURNAL, 2014, 29 (12): : 1133 - 1139