Quasiconformal harmonic maps;
Jordan domains;
Lipschitz condition;
BOUNDARY CORRESPONDENCE;
MAPS;
D O I:
暂无
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
In [11] the author proved that every quasiconformal harmonic mapping between two Jordan domains with C-1,C-alpha, 0 < alpha <= 1, boundary is bi-Lipschitz, providing that the domain is convex. In this paper we avoid the restriction of convexity. More precisely we prove: any quasiconformal harmonic mapping between two Jordan domains Omega(j), j = 1, 2, with C-j,C-alpha, j = 1, 2 boundary is bi-Lipschitz.
机构:
Shandong Univ, Res Ctr Math & Interdisciplinary Sci, Qingdao 266237, Peoples R China
Minist Educ, Frontiers Sci Ctr Nonlinear Expectat, Qingdao, Peoples R ChinaShandong Univ, Res Ctr Math & Interdisciplinary Sci, Qingdao 266237, Peoples R China
Guo, Chang-Yu
Huang, Manzi
论文数: 0引用数: 0
h-index: 0
机构:
Hunan Normal Univ, Sch Math & Stat, MOE LCSM, Changsha 410081, Hunan, Peoples R ChinaShandong Univ, Res Ctr Math & Interdisciplinary Sci, Qingdao 266237, Peoples R China
Huang, Manzi
Wang, Zhuang
论文数: 0引用数: 0
h-index: 0
机构:
Hunan Normal Univ, Sch Math & Stat, MOE LCSM, Changsha 410081, Hunan, Peoples R ChinaShandong Univ, Res Ctr Math & Interdisciplinary Sci, Qingdao 266237, Peoples R China
Wang, Zhuang
Xu, Haiqing
论文数: 0引用数: 0
h-index: 0
机构:
Shandong Univ, Res Ctr Math & Interdisciplinary Sci, Qingdao 266237, Peoples R China
Minist Educ, Frontiers Sci Ctr Nonlinear Expectat, Qingdao, Peoples R ChinaShandong Univ, Res Ctr Math & Interdisciplinary Sci, Qingdao 266237, Peoples R China
机构:
Shandong Univ, Res Ctr Math & Interdisciplinary Sci, Qingdao 266237, Peoples R ChinaShandong Univ, Res Ctr Math & Interdisciplinary Sci, Qingdao 266237, Peoples R China
Guo, Changyu
Xiang, Changlin
论文数: 0引用数: 0
h-index: 0
机构:
Yangtze Univ, Sch Informat & Math, Jingzhou 434023, Peoples R ChinaShandong Univ, Res Ctr Math & Interdisciplinary Sci, Qingdao 266237, Peoples R China