LIPSCHITZ SPACES AND HARMONIC MAPPINGS

被引:0
|
作者
Kalaj, David [1 ]
机构
[1] Univ Montenegro, Fac Nat Sci & Math, Podgorica 81000, Montenegro
关键词
Quasiconformal harmonic maps; Jordan domains; Lipschitz condition; BOUNDARY CORRESPONDENCE; MAPS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In [11] the author proved that every quasiconformal harmonic mapping between two Jordan domains with C-1,C-alpha, 0 < alpha <= 1, boundary is bi-Lipschitz, providing that the domain is convex. In this paper we avoid the restriction of convexity. More precisely we prove: any quasiconformal harmonic mapping between two Jordan domains Omega(j), j = 1, 2, with C-j,C-alpha, j = 1, 2 boundary is bi-Lipschitz.
引用
收藏
页码:475 / 485
页数:11
相关论文
共 50 条
  • [21] LIPSCHITZ TYPE CHARACTERIZATIONS OF HARMONIC BERGMAN SPACES
    Nam, Kyesook
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2013, 50 (04) : 1277 - 1288
  • [22] On Bi-lipschitz type inequalities for quasiconformal harmonic mappings
    Partyka, Dariusz
    Sakan, Ken-Ichi
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2007, 32 (02) : 579 - 594
  • [23] Stability of Generalized Multi-quadratic Mappings in Lipschitz Spaces
    Dashti, Mahshid
    Khodaei, Hamid
    RESULTS IN MATHEMATICS, 2019, 74 (04)
  • [24] Stability of Generalized Multi-quadratic Mappings in Lipschitz Spaces
    Mahshid Dashti
    Hamid Khodaei
    Results in Mathematics, 2019, 74
  • [25] Linear or bilinear mappings between spaces of continuous or Lipschitz functions
    Rambla-Barreno, Fernando
    PROCEEDINGS OF THE FOURTH INTERNATIONAL SCHOOL - ADVANCED COURSES OF MATHEMATICAL ANALYSIS IV, 2012, : 216 - 225
  • [26] An area formula for Lipschitz mappings of Carnot-Caratheodory spaces
    Karmanova, M. B.
    IZVESTIYA MATHEMATICS, 2014, 78 (03) : 475 - 499
  • [27] ON THE LACK OF DENSITY OF LIPSCHITZ MAPPINGS IN SOBOLEV SPACES WITH HEISENBERG TARGET
    Dejarnette, Noel
    Hajlasz, Piotr
    Lukyanenko, Anton
    Tyson, Jeremy T.
    CONFORMAL GEOMETRY AND DYNAMICS, 2014, 18 : 119 - 156
  • [28] Relative ranks of Lipschitz mappings on countable discrete metric spaces
    Cichon, J.
    Mitchell, J. D.
    Morayne, M.
    Peresse, Y.
    TOPOLOGY AND ITS APPLICATIONS, 2011, 158 (03) : 412 - 423
  • [29] UNIVALENCE CRITERIA AND LIPSCHITZ-TYPE SPACES ON PLURIHARMONIC MAPPINGS
    Chen, Sh.
    Ponnusamv, S.
    Wang, X.
    MATHEMATICA SCANDINAVICA, 2015, 116 (02) : 171 - 181
  • [30] On the convergence of fixed points for Lipschitz type mappings in hyperbolic spaces
    Kang, Shin Min
    Dashputre, Samir
    Malagar, Bhuwan Lal
    Rafiq, Arif
    FIXED POINT THEORY AND APPLICATIONS, 2014,