LIPSCHITZ SPACES AND HARMONIC MAPPINGS

被引:0
|
作者
Kalaj, David [1 ]
机构
[1] Univ Montenegro, Fac Nat Sci & Math, Podgorica 81000, Montenegro
关键词
Quasiconformal harmonic maps; Jordan domains; Lipschitz condition; BOUNDARY CORRESPONDENCE; MAPS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In [11] the author proved that every quasiconformal harmonic mapping between two Jordan domains with C-1,C-alpha, 0 < alpha <= 1, boundary is bi-Lipschitz, providing that the domain is convex. In this paper we avoid the restriction of convexity. More precisely we prove: any quasiconformal harmonic mapping between two Jordan domains Omega(j), j = 1, 2, with C-j,C-alpha, j = 1, 2 boundary is bi-Lipschitz.
引用
收藏
页码:475 / 485
页数:11
相关论文
共 50 条
  • [1] LIPSCHITZ-TYPE SPACES AND HARMONIC MAPPINGS IN THE SPACE
    Arsenovic, Milos
    Manojlovic, Vesna
    Mateljevic, Miodrag
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2010, 35 (02) : 379 - 387
  • [2] LIPSCHITZ SPACES AND BOUNDED MEAN OSCILLATION OF HARMONIC MAPPINGS
    Chen, Sh
    Ponnusamy, S.
    Vuorinen, M.
    Wang, X.
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2013, 88 (01) : 143 - 157
  • [3] Lengths, areas and Lipschitz-type spaces of planar harmonic mappings
    Chen, Shaolin
    Ponnusamy, Saminathan
    Rasila, Antti
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2015, 115 : 62 - 70
  • [4] LIPSCHITZ HOMOTOPY AND DENSITY OF LIPSCHITZ MAPPINGS IN SOBOLEV SPACES
    Hajlasz, Piotr
    Schikorra, Armin
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2014, 39 (02) : 593 - 604
  • [5] LIPSCHITZ MAPPINGS BETWEEN FRECHET SPACES
    MANKIEWICZ, P
    STUDIA MATHEMATICA, 1972, 41 (03) : 225 - +
  • [6] LIPSCHITZ MAPPINGS OF METRIC-SPACES
    KADETS, VM
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII MATEMATIKA, 1985, (01): : 30 - 34
  • [7] DIFFERENTIABILITY OF LIPSCHITZ MAPPINGS IN FRECHET SPACES
    MANKIEWICZ, P
    STUDIA MATHEMATICA, 1973, 45 (01) : 15 - 29
  • [8] COEFFICIENT ESTIMATES, LANDAU'S THEOREM AND LIPSCHITZ-TYPE SPACES ON PLANAR HARMONIC MAPPINGS
    Chen, Shaolin
    Ponnusamy, Saminathan
    Rasila, Antti
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2014, 96 (02) : 198 - 215
  • [9] Harmonic mappings in Bergman spaces
    Sh. Chen
    S. Ponnusamy
    X. Wang
    Monatshefte für Mathematik, 2013, 170 : 325 - 342
  • [10] Harmonic mappings in Bergman spaces
    Chen, Sh
    Ponnusamy, S.
    Wang, X.
    MONATSHEFTE FUR MATHEMATIK, 2013, 170 (3-4): : 325 - 342