Edge-maximal graphs without disjoint odd cycles

被引:0
作者
Bataineh, Mohammed S. [1 ,2 ]
Jaradat, Mohammed M. M. [3 ]
Vetrik, Tomas [4 ]
机构
[1] Univ Sharjah, Dept Math, Sharjah, U Arab Emirates
[2] Yarmouk Univ, Dept Math, Irbid, Jordan
[3] Qatar Univ, Dept Math Stat & Phys, Doha, Qatar
[4] Univ Free State, Dept Math & Appl Math, Bloemfontein, South Africa
基金
新加坡国家研究基金会;
关键词
Turan number; odd cycle; extremal graph;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a graph G we define ex(n, G) to be the maximum number of edges in a graph on n vertices that does not contain G as a sub-graph. Similarly, let ex'(n, G) be the largest number of edges in a Hamiltonian graph having n vertices which does not contain G. We study ex (n, G) and ex'(n, G) if G is the disjoint union of p >= 2 odd cycles. We present exact values of ex(n, G) and ex'(n, G) for sufficiently large n if G is the disjoint union of two cycles of order 2k + 1, where k >= 2.
引用
收藏
页码:247 / 253
页数:7
相关论文
共 8 条
  • [1] EDGE MAXIMAL C2k+1-EDGE DISJOINT FREE GRAPHS
    Bataineh, M. S. A.
    Jaradat, M. M. M.
    [J]. DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2012, 32 (02) : 271 - 278
  • [2] Bataineh M, 2011, JORDAN J MATH STAT, V4, P79
  • [3] Bondy J. A., 1974, Journal of Combinatorial Theory, Series B, V16, P97, DOI 10.1016/0095-8956(74)90052-5
  • [4] Edge maximal non-bipartite graphs without odd cycles of prescribed lengths
    Caccetta, L
    Jia, RZ
    [J]. GRAPHS AND COMBINATORICS, 2002, 18 (01) : 75 - 92
  • [5] Lai C., 2014, J COMBIN MATH COMBIN, V91, P51
  • [6] Simonovits M., 1966, Theory of Graphs Proc. Colloq., Tihany, P279
  • [7] Turan P., 1941, Mat. Fiz. Lapok, V48, P436
  • [8] Yang YS, 2004, UTILITAS MATHEMATICA, V66, P249