A CONVERGENCE RESULT FOR FINITE VOLUME SCHEMES ON RIEMANNIAN MANIFOLDS

被引:11
作者
Giesselmann, Jan [1 ]
机构
[1] Univ Stuttgart IANS, D-70569 Stuttgart, Germany
来源
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE | 2009年 / 43卷 / 05期
关键词
Finite volume method; conservation law; curved manifold; SHALLOW-WATER TURBULENCE; SPHERICAL GEOMETRY; HYPERBOLIC SYSTEMS; SOLAR TACHOCLINE; GALERKIN METHODS; EQUATIONS; PROPAGATION; WAVES; GRIDS; JETS;
D O I
10.1051/m2an/2009013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper studies a family of finite volume schemes for the hyperbolic scalar conservation law u(t) + del(g) . f( x, u) = 0 on a closed Riemannian manifold M. For an initial value in BV( M) we will show that these schemes converge with a h 1/4 convergence rate towards the entropy solution. When M is 1-dimensional the schemes are TVD and we will show that this improves the convergence rate to h 1/2.
引用
收藏
页码:929 / 955
页数:27
相关论文
共 50 条
[41]   A Family of Finite Volume Schemes of Arbitrary Order on Rectangular Meshes [J].
Zhang, Zhimin ;
Zou, Qingsong .
JOURNAL OF SCIENTIFIC COMPUTING, 2014, 58 (02) :308-330
[42]   Stability of Preconditioned Finite Volume Schemes at Low Mach Numbers [J].
P. Birken ;
A. Meister .
BIT Numerical Mathematics, 2005, 45 :463-480
[43]   Analysis of four finite volume schemes for plane stress problems [J].
Qin, Yueping ;
Sun, Quan ;
Yang, Xiaobin ;
Zhang, Guoyu .
PROGRESS IN INDUSTRIAL AND CIVIL ENGINEERING, PTS. 1-5, 2012, 204-208 :4635-4642
[44]   Tetrahedral quadratic finite volume method schemes for the Stokes equation [J].
Zhang, Jiehua .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2025, 463
[45]   Stability of preconditioned finite volume schemes at low Mach numbers [J].
Birken, P ;
Meister, A .
BIT NUMERICAL MATHEMATICS, 2005, 45 (03) :463-480
[46]   FINITE VOLUME SCHEMES FOR CONSERVATION-LAWS OF MIXED TYPE [J].
GALLOUET, T ;
VILA, JP .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1991, 28 (06) :1548-1573
[47]   STUDY OF DISCRETE DUALITY FINITE VOLUME SCHEMES FOR THE PEACEMAN MODEL [J].
Chainais-Hillairet, C. ;
Krell, S. ;
Mouton, A. .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2013, 35 (06) :A2928-A2952
[48]   A Family of Finite Volume Schemes of Arbitrary Order on Rectangular Meshes [J].
Zhimin Zhang ;
Qingsong Zou .
Journal of Scientific Computing, 2014, 58 :308-330
[49]   Coupling finite volume and nonstandard finite difference schemes for a singularly perturbed Schrodinger equation [J].
Aderogba, A. A. ;
Chapwanya, M. ;
Kamdem, J. Djoko ;
Lubuma, J. M. -S. .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2016, 93 (11) :1833-1844
[50]   On the Calculus of Limiting Subjets on Riemannian Manifolds [J].
Hejazi, Mansoureh Alavi ;
Hosseini, Seyedehsomayeh ;
Pouryayevali, Mohamad R. .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2013, 10 (01) :593-607