A CONVERGENCE RESULT FOR FINITE VOLUME SCHEMES ON RIEMANNIAN MANIFOLDS

被引:11
作者
Giesselmann, Jan [1 ]
机构
[1] Univ Stuttgart IANS, D-70569 Stuttgart, Germany
来源
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE | 2009年 / 43卷 / 05期
关键词
Finite volume method; conservation law; curved manifold; SHALLOW-WATER TURBULENCE; SPHERICAL GEOMETRY; HYPERBOLIC SYSTEMS; SOLAR TACHOCLINE; GALERKIN METHODS; EQUATIONS; PROPAGATION; WAVES; GRIDS; JETS;
D O I
10.1051/m2an/2009013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper studies a family of finite volume schemes for the hyperbolic scalar conservation law u(t) + del(g) . f( x, u) = 0 on a closed Riemannian manifold M. For an initial value in BV( M) we will show that these schemes converge with a h 1/4 convergence rate towards the entropy solution. When M is 1-dimensional the schemes are TVD and we will show that this improves the convergence rate to h 1/2.
引用
收藏
页码:929 / 955
页数:27
相关论文
共 50 条
[31]   FINITE VOLUME SCHEMES FOR THE ELECTRICAL IMPEDANCE TOMOGRAPHY PROBLEM [J].
Sherina, E. S. ;
Starchenko, A., V .
VESTNIK TOMSKOGO GOSUDARSTVENNOGO UNIVERSITETA-MATEMATIKA I MEKHANIKA-TOMSK STATE UNIVERSITY JOURNAL OF MATHEMATICS AND MECHANICS, 2014, (29) :25-38
[32]   Comparison of finite-volume schemes for diffusion problems [J].
Schneider, Martin ;
Glaeser, Dennis ;
Flemisch, Bernd ;
Helmig, Rainer .
OIL & GAS SCIENCE AND TECHNOLOGY-REVUE D IFP ENERGIES NOUVELLES, 2018, 73
[33]   STABILITY AND CONVERGENCE OF AN HYBRID FINITE VOLUME-FINITE ELEMENT METHOD FOR A MULTIPHASIC INCOMPRESSIBLE FLUID MODEL [J].
Calgaro, Caterina ;
Ezzoug, Meriem ;
Zahrouni, Ezzeddine .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2018, 17 (02) :429-448
[34]   Polynomial Regression on Riemannian Manifolds [J].
Hinkle, Jacob ;
Muralidharan, Prasanna ;
Fletcher, P. Thomas ;
Joshi, Sarang .
COMPUTER VISION - ECCV 2012, PT III, 2012, 7574 :1-14
[35]   FINITE VOLUME PERSPECTIVES ON FINITE DIFFERENCE SCHEMES AND BOUNDARY FORUMULATIONS FOR WAVE SIMULATION [J].
Hamilton, Brian .
DAFX-14: 17TH INTERNATIONAL CONFERENCE ON DIGITAL AUDIO EFFECTS, 2014, :295-302
[36]   Accuracy Analysis for Explicit-Implicit Finite Volume Schemes on Cut Cell Meshes [J].
May, Sandra ;
Laakmann, Fabian .
COMMUNICATIONS ON APPLIED MATHEMATICS AND COMPUTATION, 2024, 6 (04) :2239-2264
[37]   Quinpi: Integrating Stiff Hyperbolic Systems with Implicit High Order Finite Volume Schemes [J].
Puppo, Gabriella ;
Semplice, Matteo ;
Visconti, Giuseppe .
COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2024, 36 (01) :30-70
[38]   SEMI-CONSERVATIVE FINITE VOLUME SCHEMES FOR CONSERVATION LAWS [J].
Pidatella, Rosa Maria ;
Puppo, Gabriella ;
Russo, Giovanni ;
Santagati, Pietro .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2019, 41 (03) :B576-B600
[39]   A CLASS OF COLLOCATED FINITE VOLUME SCHEMES FOR INCOMPRESSIBLE FLOW PROBLEMS [J].
Eymard, R. ;
Herbin, R. ;
Latche, J-C ;
Piar, B. .
ALGORITMY 2009: 18TH CONFERENCE ON SCIENTIFIC COMPUTING, 2009, :31-40
[40]   A Class of Finite Volume Schemes of Arbitrary Order on Nonuniform Meshes [J].
Zhang, Qinghui ;
Zou, Qingsong .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2014, 30 (05) :1614-1632