A CONVERGENCE RESULT FOR FINITE VOLUME SCHEMES ON RIEMANNIAN MANIFOLDS

被引:11
作者
Giesselmann, Jan [1 ]
机构
[1] Univ Stuttgart IANS, D-70569 Stuttgart, Germany
来源
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE | 2009年 / 43卷 / 05期
关键词
Finite volume method; conservation law; curved manifold; SHALLOW-WATER TURBULENCE; SPHERICAL GEOMETRY; HYPERBOLIC SYSTEMS; SOLAR TACHOCLINE; GALERKIN METHODS; EQUATIONS; PROPAGATION; WAVES; GRIDS; JETS;
D O I
10.1051/m2an/2009013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper studies a family of finite volume schemes for the hyperbolic scalar conservation law u(t) + del(g) . f( x, u) = 0 on a closed Riemannian manifold M. For an initial value in BV( M) we will show that these schemes converge with a h 1/4 convergence rate towards the entropy solution. When M is 1-dimensional the schemes are TVD and we will show that this improves the convergence rate to h 1/2.
引用
收藏
页码:929 / 955
页数:27
相关论文
共 50 条
[21]   CONVERGENCE OF THE FINITE-VOLUME METHOD FOR MULTIDIMENSIONAL CONSERVATION-LAWS [J].
COCKBURN, B ;
COQUEL, F ;
LEFLOCH, PG .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1995, 32 (03) :687-705
[22]   On the convergence of a finite volume method for the Navier-Stokes-Fourier system [J].
Feireisl, Eduard ;
Lukacova-Medvid'ova, Maria ;
Mizerova, Hana ;
She, Bangwei .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2021, 41 (04) :2388-2422
[23]   Entropy Method and Asymptotic Behaviours of Finite Volume Schemes [J].
Chainais-Hillairet, Claire .
FINITE VOLUMES FOR COMPLEX APPLICATIONS VII - METHODS AND THEORETICAL ASPECTS, 2014, 77 :17-35
[24]   Finite volume schemes for dispersive wave propagation and runup [J].
Dutykh, Denys ;
Katsaounis, Theodoros ;
Mitsotakis, Dimitrios .
JOURNAL OF COMPUTATIONAL PHYSICS, 2011, 230 (08) :3035-3061
[25]   ON THE ACCURACY OF FINITE-VOLUME SCHEMES FOR FLUCTUATING HYDRODYNAMICS [J].
Donev, Aleksandar ;
Vanden-Eijnden, Eric ;
Garcia, Alejandro ;
Bell, John .
COMMUNICATIONS IN APPLIED MATHEMATICS AND COMPUTATIONAL SCIENCE, 2010, 5 (02) :149-197
[26]   An Approach to Improve the Convergence Order in Finite Volume and Finite Element Methods [J].
Bradji, Abdallah .
NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS 1 AND 2, 2009, 1168 :1162-1165
[27]   FINITE VOLUME SCHEMES FOR THE BIHARMONIC PROBLEM ON GENERAL MESHES [J].
Eymard, R. ;
Gallouet, T. ;
Herbin, R. ;
Linke, A. .
MATHEMATICS OF COMPUTATION, 2012, 81 (280) :2019-2048
[28]   Finite volume schemes and Lax-Wendroff consistency [J].
Eymard, Robert ;
Gallouet, Thierry ;
Herbin, Raphaele ;
Latche, Jean-Claude .
COMPTES RENDUS MECANIQUE, 2022, 350
[29]   Finite-volume schemes for Friedrichs systems with involutions [J].
Betancourt, Fernando ;
Rohde, Christian .
APPLIED MATHEMATICS AND COMPUTATION, 2016, 272 :420-439
[30]   On discrete functional inequalities for some finite volume schemes [J].
Bessemoulin-Chatard, Marianne ;
Chainais-Hillairet, Claire ;
Filbet, Francis .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2015, 35 (03) :1125-1149