共 50 条
A CONVERGENCE RESULT FOR FINITE VOLUME SCHEMES ON RIEMANNIAN MANIFOLDS
被引:11
|作者:
Giesselmann, Jan
[1
]
机构:
[1] Univ Stuttgart IANS, D-70569 Stuttgart, Germany
来源:
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE
|
2009年
/
43卷
/
05期
关键词:
Finite volume method;
conservation law;
curved manifold;
SHALLOW-WATER TURBULENCE;
SPHERICAL GEOMETRY;
HYPERBOLIC SYSTEMS;
SOLAR TACHOCLINE;
GALERKIN METHODS;
EQUATIONS;
PROPAGATION;
WAVES;
GRIDS;
JETS;
D O I:
10.1051/m2an/2009013
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
This paper studies a family of finite volume schemes for the hyperbolic scalar conservation law u(t) + del(g) . f( x, u) = 0 on a closed Riemannian manifold M. For an initial value in BV( M) we will show that these schemes converge with a h 1/4 convergence rate towards the entropy solution. When M is 1-dimensional the schemes are TVD and we will show that this improves the convergence rate to h 1/2.
引用
收藏
页码:929 / 955
页数:27
相关论文