Data analysis in visual power line inspection: An in-depth review of deep learning for component detection and fault diagnosis

被引:47
|
作者
Liu, Xinyu [1 ]
Miao, Xiren [1 ]
Jiang, Hao [1 ]
Chen, Jing [1 ]
机构
[1] Fuzhou Univ, Coll Elect Engn & Automat, Fuzhou 350108, Peoples R China
基金
中国国家自然科学基金;
关键词
Power lines; Aerial inspection; Computer vision; Image analysis; Component detection; Fault diagnosis; Deep learning; CONVOLUTIONAL NEURAL-NETWORK; UNMANNED AERIAL VEHICLES; INSULATOR DETECTION; SYSTEM; CLASSIFICATION; RECOGNITION; MAINTENANCE; IMAGES; MODEL;
D O I
10.1016/j.arcontrol.2020.09.002
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The widespread popularity of unmanned aerial vehicles enables an immense amount of power line inspection data to be collected. It is an urgent issue to employ massive data especially the visible images to maintain the reliability, safety, and sustainability of power transmission. To date, substantial works have been conducted on the data analysis for power line inspection. With the aim of providing a comprehensive overview for researchers interested in developing a deep-learning-based analysis system for power line inspection data, this paper conducts a thorough review of the current literature and identifies the challenges for future study. Following the typical procedure of data analysis in power line inspection, current works in this area are categorized into component detection and fault diagnosis. For each aspect, the techniques and methodologies adopted in the literature are summarized. Valuable information is also included such as data description and method performance. In particular, an in-depth discussion of existing deep-learning-based analysis methods of power line inspection data is proposed. To conclude the paper, several study trends for the future in this area are presented including data quality problems, small object detection, embedded application, and evaluation baseline.
引用
收藏
页码:253 / 277
页数:25
相关论文
共 50 条
  • [1] Deep learning in automated power line inspection: A review
    Faisal, Md. Ahasan Atick
    Mecheter, Imene
    Qiblawey, Yazan
    Fernandez, Javier Hernandez
    Chowdhury, Muhammad E. H.
    Kiranyaz, Serkan
    APPLIED ENERGY, 2025, 385
  • [2] Structural Crack Detection Using Deep Learning: An In-depth Review
    Khan, Safran
    Jan, Abdullah
    Seo, Suyoung
    KOREAN JOURNAL OF REMOTE SENSING, 2023, 39 (04) : 371 - 393
  • [3] UAV Visual and Thermographic Power Line Detection Using Deep Learning
    Santos, Tiago
    Cunha, Tiago
    Dias, Andre
    Moreira, Antonio Paulo
    Almeida, Jose
    SENSORS, 2024, 24 (17)
  • [4] Data-Driven Machine Learning for Fault Detection and Diagnosis in Nuclear Power Plants: A Review
    Hu, Guang
    Zhou, Taotao
    Liu, Qianfeng
    FRONTIERS IN ENERGY RESEARCH, 2021, 9
  • [5] Deep Learning Aided Data-Driven Fault Diagnosis of Rotatory Machine: A Comprehensive Review
    Mushtaq, Shiza
    Islam, M. M. Manjurul
    Sohaib, Muhammad
    ENERGIES, 2021, 14 (16)
  • [6] Challenges and Opportunities of Deep Learning Models for Machinery Fault Detection and Diagnosis: A Review
    Saufi, Syahril Ramadhan
    Bin Ahmad, Zair Asrar
    Leong, Mohd Salman
    Lim, Meng Hee
    IEEE ACCESS, 2019, 7 : 122644 - 122662
  • [7] Vehicle Detection through Self-supervised Learning: An In-depth Review and Critical Analysis
    Tuteja, Shikha
    Tonk, Ravinder
    Kaur, Taranjeet
    Sharma, Preeti
    Sadana, Priya
    Kumar, Rajeev
    Kumar, Sunil
    RECENT ADVANCES IN ELECTRICAL & ELECTRONIC ENGINEERING, 2025,
  • [8] Deep Transfer Learning Models for Industrial Fault Diagnosis Using Vibration and Acoustic Sensors Data: A Review
    Bhuiyan, Roman
    Uddin, Jia
    VIBRATION, 2023, 6 (01): : 218 - 238
  • [9] Deep learning based nonlinear principal component analysis for industrial process fault detection
    Deng, Xiaogang
    Tian, Xuemin
    Chen, Sheng
    Harris, Chris J.
    2017 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2017, : 1237 - 1243
  • [10] Challenges and opportunities of deep learning-based process fault detection and diagnosis: a review
    Yu, Jianbo
    Zhang, Yue
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (01) : 211 - 252