Relatively hyperbolic groups: geometry and quasi-isometric invariance

被引:0
作者
Drutu, Cornelia [1 ]
机构
[1] Math Inst, Oxford OX1 3LB, England
关键词
Relative hyperbolicity; rigidity; quasi-isometry; ASYMPTOTIC CONES; RIGIDITY; THEOREM; SPACES;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper it is proved that relative hyperbolicity is a quasi-isometry invariant. As byproducts of the arguments, simplified definitions of relative hyperbolicity are provided. In particular we obtain a new definition very similar to the one of hyperbolicity, relying on the existence of a central left coset of a peripheral subgroup for every quasi-geodesic triangle.
引用
收藏
页码:503 / 546
页数:44
相关论文
共 36 条
  • [1] Limit groups are CAT(0)
    Alibegovic, Emina
    Bestvina, Mladen
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2006, 74 : 259 - 272
  • [2] [Anonymous], 1993, GEOMETRIC GROUP THEO
  • [3] [Anonymous], I HAUTES ETUDES SCI, DOI 10.1007/BF02698687
  • [4] Behrstock J., MATH ANN IN PRESS
  • [5] Asymptotic geometry of the mapping class group and Teichmuller space
    Behrstock, Jason A.
    [J]. GEOMETRY & TOPOLOGY, 2006, 10 : 1523 - 1578
  • [6] Bourbaki N., 1965, Elements de mathematique. Integration. Chapitres 1-4
  • [7] Bowditch BrianH., 1997, RELATIVELY HYPERBOLI
  • [8] Curvature and rank of Teichmuller space
    Brock, J
    Farb, B
    [J]. AMERICAN JOURNAL OF MATHEMATICS, 2006, 128 (01) : 1 - 22
  • [9] Combination of convergence groups
    Dahmani, F
    [J]. GEOMETRY & TOPOLOGY, 2003, 7 : 933 - 963
  • [10] DAHMANI F, 2003, THESIS U STRASBOURG