Validation of a fast method for quantification of intra-abdominal and subcutaneous adipose tissue for large-scale human studies

被引:55
作者
Borga, Magnus [1 ,2 ,3 ]
Thomas, E. Louise [4 ]
Romu, Thobias [1 ,2 ]
Rosander, Johannes [3 ]
Fitzpatrick, Julie [4 ]
Leinhard, Olof Dahlqvist [5 ]
Bell, Jimmy D. [4 ]
机构
[1] Linkoping Univ, Dept Biomed Engn, S-58183 Linkoping, Sweden
[2] Linkoping Univ, Ctr Med Image Sci & Visualizat CMIV, S-58183 Linkoping, Sweden
[3] Adv MR Analyt AB, Linkoping, Sweden
[4] Univ Westminster, Fac Sci & Technol, Dept Life Sci, London W1R 8AL, England
[5] Linkoping Univ, Dept Med & Hlth Sci, S-58183 Linkoping, Sweden
基金
英国医学研究理事会;
关键词
adipose tissue; fat quantitation; obesity; MRI; Dixon; abdominal fat; WHOLE-BODY; METABOLIC RISK; ABDOMINAL FAT; MRI; SOFTWARE; OBESE; WATER; TOPOGRAPHY; ADULTS;
D O I
10.1002/nbm.3432
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Central obesity is the hallmark of a number of non-inheritable disorders. The advent of imaging techniques such as MRI has allowed for a fast and accurate assessment of body fat content and distribution. However, image analysis continues to be one of the major obstacles to the use of MRI in large-scale studies. In this study we assess the validity of the recently proposed fat-muscle quantitation system (AMRA (TM) Profiler) for the quantification of intra-abdominal adipose tissue (IAAT) and abdominal subcutaneous adipose tissue (ASAT) from abdominal MR images. Abdominal MR images were acquired from 23 volunteers with a broad range of BMIs and analysed using sliceOmatic, the current gold-standard, and the AMRA (TM) Profiler based on a non-rigid image registration of a library of segmented atlases. The results show that there was a highly significant correlation between the fat volumes generated by the two analysis methods, (Pearson correlation r = 0.97, p < 0.001), with the AMRA (TM) Profiler analysis being significantly faster (similar to 3 min) than the conventional sliceOmatic approach (similar to 40 min). There was also excellent agreement between the methods for the quantification of IAAT (AMRA 4.73 +/- 1.99 versus sliceOmatic 4.73 +/- 1.75 l, p = 0.97). For the AMRA (TM) Profiler analysis, the intra-observer coefficient of variation was 1.6% for IAAT and 1.1% for ASAT, the inter-observer coefficient of variation was 1.4% for IAAT and 1.2% for ASAT, the intra-observer correlation was 0.998 for IAAT and 0.999 for ASAT, and the inter-observer correlation was 0.999 for both IAAT and ASAT. These results indicate that precise and accurate measures of body fat content and distribution can be obtained in a fast and reliable form by the AMRA (TM) Profiler, opening up the possibility of large-scale human phenotypic studies. Copyright (C) 2015 John Wiley & Sons, Ltd.
引用
收藏
页码:1747 / 1753
页数:7
相关论文
共 33 条
[1]   Validation of Volumetric and Single-Slice MRI Adipose Analysis Using a Novel Fully Automated Segmentation Method [J].
Addeman, Bryan T. ;
Kutty, Shelby ;
Perkins, Thomas G. ;
Soliman, Abraam S. ;
Wiens, Curtis N. ;
McCurdy, Colin M. ;
Beaton, Melanie D. ;
Hegele, Robert A. ;
McKenzie, Charles A. .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2015, 41 (01) :233-241
[2]   Quantitative comparison and evaluation of software packages for assessment of abdominal adipose tissue distribution by magnetic resonance imaging [J].
Bonekamp, S. ;
Ghosh, P. ;
Crawford, S. ;
Solga, S. F. ;
Horska, A. ;
Brancati, F. I. ;
Diehl, A. M. ;
Smith, S. ;
Clark, J. M. .
INTERNATIONAL JOURNAL OF OBESITY, 2008, 32 (01) :100-111
[3]   A Pooled Analysis of Waist Circumference and Mortality in 650,000 Adults [J].
Cerhan, James R. ;
Moore, Steven C. ;
Jacobs, Eric J. ;
Kitahara, Cari M. ;
Rosenberg, Philip S. ;
Adami, Hans-Olov ;
Ebbert, Jon O. ;
English, Dallas R. ;
Gapstur, Susan M. ;
Giles, Graham G. ;
Horn-Ross, Pamela L. ;
Park, Yikyung ;
Patel, Alpa V. ;
Robien, Kim ;
Weiderpass, Elisabete ;
Willett, Walter C. ;
Wolk, Alicja ;
Zeleniuch-Jacquotte, Anne ;
Hartge, Patricia ;
Bernstein, Leslie ;
de Gonzalez, Amy Berrington .
MAYO CLINIC PROCEEDINGS, 2014, 89 (03) :335-345
[4]   The Relationship of Body Mass and Fat Distribution With Incident Hypertension Observations From the Dallas Heart Study [J].
Chandra, Alvin ;
Neeland, Ian J. ;
Berry, Jarett D. ;
Ayers, Colby R. ;
Rohatgi, Anand ;
Das, Sandeep R. ;
Khera, Amit ;
McGuire, Darren K. ;
de Lemos, James A. ;
Turer, Aslan T. .
JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2014, 64 (10) :997-1002
[5]   Validity of a new automated software program for visceral adipose tissue estimation [J].
Demerath, E. W. ;
Ritter, K. J. ;
Couch, W. A. ;
Rogers, N. L. ;
Moreno, G. M. ;
Choh, A. ;
Lee, M. ;
Remsberg, K. ;
Czerwinski, S. A. ;
Chumlea, W. C. ;
Siervogel, R. M. ;
Towne, B. .
INTERNATIONAL JOURNAL OF OBESITY, 2007, 31 (02) :285-291
[6]   SIMPLE PROTON SPECTROSCOPIC IMAGING [J].
DIXON, WT .
RADIOLOGY, 1984, 153 (01) :189-194
[7]   Men develop more intraabdominal obesity and signs of the metabolic syndrome after hyperalimentation than women [J].
Erlingsson, Styrbjorn ;
Herard, Sebastian ;
Leinhard, Olof Dahlqvist ;
Lindstrom, Torbjorb ;
Lanne, Toste ;
Borga, Magnus ;
Nystrom, Fredrik H. .
METABOLISM-CLINICAL AND EXPERIMENTAL, 2009, 58 (07) :995-1001
[8]   Genome-wide association studies of obesity and metabolic syndrome [J].
Fall, Tove ;
Ingelsson, Erik .
MOLECULAR AND CELLULAR ENDOCRINOLOGY, 2014, 382 (01) :740-757
[9]   Abdominal visceral and subcutaneous adipose tissue compartments - Association with metabolic risk factors in the Framingham Heart Study [J].
Fox, Caroline S. ;
Massaro, Joseph M. ;
Hoffmann, Udo ;
Pou, Karla M. ;
Maurovich-Horvat, Pal ;
Liu, Chun-Yu ;
Vasan, Ramachandran S. ;
Murabito, Joanne M. ;
Meigs, James B. ;
Cupples, L. Adrienne ;
D'Agostino, Ralph B., Sr. ;
O'Donnell, Christopher J. .
CIRCULATION, 2007, 116 (01) :39-48
[10]   Addressing phase errors in fat-water imaging using a mixed magnitude/complex fitting method [J].
Hernando, D. ;
Hines, C. D. G. ;
Yu, H. ;
Reeder, S. B. .
MAGNETIC RESONANCE IN MEDICINE, 2012, 67 (03) :638-644