Spermidine-mediated hydrogen peroxide signaling enhances the antioxidant capacity of salt-stressed cucumber roots

被引:94
作者
Wu, Jianqiang [1 ]
Shu, Sheng [1 ,2 ]
Li, Chengcheng [1 ]
Sun, Jin [1 ,2 ]
Guo, Shirong [1 ,2 ]
机构
[1] Nanjing Agr Univ, Coll Hort, Minist Agr, Key Lab Southern Vegetable Crop Genet Improvement, Nanjing 210095, Jiangsu, Peoples R China
[2] Nanjing Agr Univ, Suqian Acad Protected Hort, Suqian 223800, Peoples R China
基金
中国国家自然科学基金;
关键词
Spd; Cucumber; Salt stress; H2O2; signaling; Antioxidant capacity; Gene expression; ABIOTIC STRESS; NITRIC-OXIDE; POLYAMINE BIOSYNTHESIS; MEMBRANE-PERMEABILITY; SUPEROXIDE-DISMUTASE; ARABIDOPSIS-THALIANA; SALINITY TOLERANCE; OXIDATIVE STRESS; PROTEIN-KINASES; MEDICAGO-SATIVA;
D O I
10.1016/j.plaphy.2018.05.002
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Hydrogen peroxide (H2O2) is a key signaling molecule that mediates a variety of physiological processes and defense responses against abiotic stress in higher plants. In this study, our aims are to clarify the role of H2O2 accumulation induced by the exogenous application of spermidine (Spd) to cucumber (Cucumis sativus) seedlings in regulating the antioxidant capacity of roots under salt stress. The results showed that Spd caused a significant increase in endogenous polyamines and H2O2 levels, and peaked at 2 h after salt stress. Spd-induced H2O2 accumulation was blocked under salt stress by pretreatment with a H2O2 scavenger and respective inhibitors of cell wall peroxidase (CWPOD; EC: 1.11.1.7), polyamine oxidase (PAO; EC: 1.5.3.11) and NADPH oxidase (NOX; EC: 1.6.3.1); among these three inhibitors, the largest decrease was found in response to the addition of the inhibitor of polyamine oxidase. In addition, we observed that exogenous Spd could increase the activities of the enzymes superoxide dismutase (SOD; EC: 1.15.1.1), peroxidase (POD; EC: 1.11.1.7) and catalase (CAT; EC: 1.11.1.6) as well as the expression of their genes in salt-stressed roots, and the effects were inhibited by H2O2 scavengers and polyamine oxidase inhibitors. These results suggested that, by regulating endogenous PAs-mediated H2O2 signaling in roots, Spd could enhance antioxidant enzyme activities and reduce oxidative damage; the main source of H2O2 was polyamine oxidation, which was associated with improved tolerance and root growth recovery of cucumber under salt stress.
引用
收藏
页码:152 / 162
页数:11
相关论文
共 46 条
[1]   Polyamine oxidase activity contributes to sustain maize leaf elongation under saline stress [J].
Alberto Rodriguez, Andres ;
Javier Maiale, Santiago ;
Bernardina Menendez, Ana ;
Adolfo Ruiz, Oscar .
JOURNAL OF EXPERIMENTAL BOTANY, 2009, 60 (15) :4249-4262
[2]   Peroxisomal polyamine oxidase and NADPH-oxidase cross-talk for ROS homeostasis which affects respiration rate in Arabidopsis thaliana [J].
Andronis, Efthimios A. ;
Moschou, Panagiotis N. ;
Toumi, Imene ;
Roubelakis-Angelakis, Kalliopi A. .
FRONTIERS IN PLANT SCIENCE, 2014, 5
[3]   Reactive oxygen species: Metabolism, oxidative stress, and signal transduction [J].
Apel, K ;
Hirt, H .
ANNUAL REVIEW OF PLANT BIOLOGY, 2004, 55 :373-399
[4]   Interaction Between Polyamine and Nitric Oxide Signaling in Adaptive Responses to Drought in Cucumber [J].
Arasimowicz-Jelonek, M. ;
Floryszak-Wieczorek, J. ;
Kubis, J. .
JOURNAL OF PLANT GROWTH REGULATION, 2009, 28 (02) :177-186
[5]   SOME ENZYMES OF HYDROGEN-PEROXIDE METABOLISM IN LEAVES AND ROOT-NODULES OF MEDICAGO-SATIVA [J].
BECANA, M ;
APARICIOTEJO, P ;
IRIGOYEN, JJ ;
SANCHEZDIAZ, M .
PLANT PHYSIOLOGY, 1986, 82 (04) :1169-1171
[6]   Hydrogen peroxide produced by NADPH oxidases increases proline accumulation during salt or mannitol stress in Arabidopsis thaliana [J].
Ben Rejeb, Kilani ;
Lefebvre-De Vos, Delphine ;
Le Disquet, Isabel ;
Leprince, Anne-Sophie ;
Bordenave, Marianne ;
Maldiney, Regis ;
Jdey, Asma ;
Abdelly, Chedly ;
Savoure, Arnould .
NEW PHYTOLOGIST, 2015, 208 (04) :1138-1148
[7]   Functions of amine oxidases in plant development and defence [J].
Cona, A ;
Rea, G ;
Angelini, R ;
Federico, R ;
Tavladoraki, P .
TRENDS IN PLANT SCIENCE, 2006, 11 (02) :80-88
[8]   Plant salt-tolerance mechanisms [J].
Deinlein, Ulrich ;
Stephan, Aaron B. ;
Horie, Tomoaki ;
Luo, Wei ;
Xu, Guohua ;
Schroeder, Julian I. .
TRENDS IN PLANT SCIENCE, 2014, 19 (06) :371-379
[9]   LEAF SENESCENCE - CORRELATED WITH INCREASED LEVELS OF MEMBRANE-PERMEABILITY AND LIPID-PEROXIDATION, AND DECREASED LEVELS OF SUPEROXIDE-DISMUTASE AND CATALASE [J].
DHINDSA, RS ;
PLUMBDHINDSA, P ;
THORPE, TA .
JOURNAL OF EXPERIMENTAL BOTANY, 1981, 32 (126) :93-101
[10]   INHIBITION OF NITRITE FORMATION FROM HYDROXYLAMMONIUM-CHLORIDE - SIMPLE ASSAY FOR SUPEROXIDE-DISMUTASE [J].
ELSTNER, EF ;
HEUPEL, A .
ANALYTICAL BIOCHEMISTRY, 1976, 70 (02) :616-620