How Likely Is Simpson's Paradox?

被引:31
作者
Pavlides, Marios G. [1 ]
Perlman, Michael D. [2 ]
机构
[1] Frederick Univ Cyprus, CY-1303 Nicosia, Cyprus
[2] Univ Washington, Dept Stat, Seattle, WA 98195 USA
关键词
Bayes factor; Bayes test; Dirichlet distribution; Multinomial distribution; Simpson's Paradox; Simpson reversal; SUBDIVISIONS; PROPORTION;
D O I
10.1198/tast.2009.09007
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
What proportion of all 2 x 2 x 2 contingency tables exhibit Simpson's Paradox? An exact answer is obtained for large sample sizes and extended to 2 x 2 x l tables by Monte Carlo approximation. Conditional probabilities of the occurrence of Simpson's Paradox are also derived. If the observed cell proportions satisfy a Simpson reversal, the posterior probability that the population parameters satisfy the same reversal is obtained. This Bayesian analysis is applied to the well-known Simpson reversal of the 1995-1997 batting averages of Derek Jeter and David Justice.
引用
收藏
页码:226 / 233
页数:8
相关论文
共 20 条
[1]  
[Anonymous], PHILOS T ROYAL SOC A
[2]   SEX BIAS IN GRADUATE ADMISSIONS - DATA FROM BERKELEY [J].
BICKEL, PJ ;
HAMMEL, EA ;
OCONNELL, JW .
SCIENCE, 1975, 187 (4175) :398-404
[3]   SIMPSONS PARADOX AND SURE-THING PRINCIPLE [J].
BLYTH, CR .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1972, 67 (33) :364-&
[4]  
Davison A.C., 2003, Statistical Models
[5]   THE AMALGAMATION AND GEOMETRY OF 2-BY-2 CONTINGENCY-TABLES [J].
GOOD, IJ ;
MITTAL, Y .
ANNALS OF STATISTICS, 1987, 15 (02) :694-711
[6]   The asymptotic proportion of subdivisions of a 2x2 table that result in Simpson's Paradox [J].
Hadjicostas, P .
COMBINATORICS PROBABILITY & COMPUTING, 1998, 7 (04) :387-396
[7]   The asymptotic proportion of subdivisions of a 2 x 2 table that result in Simpson's Paradox (vol 7, pg 387, 1998) [J].
Hadjicostas, P .
COMBINATORICS PROBABILITY & COMPUTING, 1999, 8 (06) :599-599
[8]   Asymptotic upper bounds for the proportion of Simpson subdivisions of a 2 x 2 table [J].
Hadjicostas, P .
COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2001, 30 (04) :1031-1051
[9]   Copositive matrices and Simpson's paradox [J].
Hadjicostas, P .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1997, 264 :475-488
[10]  
Hartigan J.A.:., 1983, BAYES THEORY