Performance evaluation, of simple multiobjective genetic local search algorithms on multiobjective 0/1 knapsack problems

被引:13
|
作者
Ishibuchi, H [1 ]
Narukawa, K [1 ]
机构
[1] Osaka Prefecture Univ, Dept Ind Engn, Sakai, Osaka 5998531, Japan
关键词
D O I
10.1109/CEC.2004.1330890
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The aim of this paper is to demonstrate high search ability of our simple multiobjective genetic local search (S-MOGLS) algorithm. First we explain the basic framework of the S-MOGLS algorithm, which can be easily understood, easily implemented and efficiently executed with small memory storage and short CPU time. The S-MOGLS algorithm uses Pareto ranking and a crowding measure for generation update in the same manner as the NSGA-II. Thus the S-MOGLS algorithm can be viewed as a hybrid algorithm of the NSGA-II with local search. Next we examine the performance of various variants of the S-MOGLS algorithm. Some variants use a weighted scalar fitness function in parent selection and local search while others use Pareto ranking. In computational experiments, we examine a wide range of parameter specifications for finding the point in the implementation of hybrid algorithms. Finally the S-MOGLS algorithm is compared with some evolutionary multiobjective optimization algorithms.
引用
收藏
页码:441 / 448
页数:8
相关论文
共 50 条
  • [1] How to Strike a Balance between Local Search and Global Search in Multiobjective Memetic Algorithms for Multiobjective 0/1 Knapsack Problems
    Ishibuchi, Hisao
    Tanigaki, Yuki
    Akedo, Naoya
    Nojima, Yusuke
    2013 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2013, : 1643 - 1650
  • [2] Effects of repair procedures on the performance of EMO algorithms for multiobjective 0/1 knapsack problems
    Ishibuchi, H
    Kaige, S
    CEC: 2003 CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-4, PROCEEDINGS, 2003, : 2254 - 2261
  • [3] A Novel Multiobjective Optimization Algorithm for 0/1 Multiobjective Knapsack Problems
    Chen, Min-Rong
    Weng, Jian
    Li, Xia
    ICIEA 2010: PROCEEDINGS OF THE 5TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS, VOL 3, 2010, : 359 - +
  • [4] Local dominance and local recombination in MOEAs on 0/1 multiobjective knapsack problems
    Sato, Hiroyuki
    Aguirre, Hernan E.
    Tanaka, Kiyoshi
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2007, 181 (03) : 1708 - 1723
  • [5] Quantum-inspired multiobjective evolutionary algorithm for multiobjective 0/1 knapsack problems
    Kim, Yehoon
    Kim, Jong-Hwan
    Han, Kuk-Hyun
    2006 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-6, 2006, : 2586 - 2591
  • [6] An interactive fuzzy satisficing method for multiobjective multidimensional 0-1 knapsack problems through genetic algorithms
    Sakawa, M
    Kato, K
    Shibano, T
    1996 IEEE INTERNATIONAL CONFERENCE ON EVOLUTIONARY COMPUTATION (ICEC '96), PROCEEDINGS OF, 1996, : 243 - 246
  • [7] Improving the performance of evolutionary algorithms for the multiobjective 0/1 knapsack problem using ε-dominance
    Grosan, C
    CEC2004: PROCEEDINGS OF THE 2004 CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1 AND 2, 2004, : 1958 - 1963
  • [8] Improving the performance of evolutionary algorithms for the multiobjective 0/1 knapsack problem using ε-dominance
    Grosan, C
    Oltean, M
    COMPUTATIONAL SCIENCE - ICCS 2004, PT 2, PROCEEDINGS, 2004, 3037 : 674 - 677
  • [9] Evolutionary and heuristic algorithms for multiobjective 0-1 knapsack problem
    Kumar, Rajeev
    Singh, R. K.
    Singhal, A. P.
    Bhartia, Atul
    APPLICATIONS OF SOFT COMPUTING: RECENT TRENDS, 2006, : 331 - +
  • [10] Scalability of Multiobjective Genetic Local Search to Many-Objective Problems: Knapsack Problem Case Studies
    Isbibuchi, Hisao
    Hitotsuyanagi, Yasuhiro
    Nojima, Yusuke
    2008 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-8, 2008, : 3586 - 3593