Performance evaluation, of simple multiobjective genetic local search algorithms on multiobjective 0/1 knapsack problems

被引:13
作者
Ishibuchi, H [1 ]
Narukawa, K [1 ]
机构
[1] Osaka Prefecture Univ, Dept Ind Engn, Sakai, Osaka 5998531, Japan
来源
CEC2004: PROCEEDINGS OF THE 2004 CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1 AND 2 | 2004年
关键词
D O I
10.1109/CEC.2004.1330890
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The aim of this paper is to demonstrate high search ability of our simple multiobjective genetic local search (S-MOGLS) algorithm. First we explain the basic framework of the S-MOGLS algorithm, which can be easily understood, easily implemented and efficiently executed with small memory storage and short CPU time. The S-MOGLS algorithm uses Pareto ranking and a crowding measure for generation update in the same manner as the NSGA-II. Thus the S-MOGLS algorithm can be viewed as a hybrid algorithm of the NSGA-II with local search. Next we examine the performance of various variants of the S-MOGLS algorithm. Some variants use a weighted scalar fitness function in parent selection and local search while others use Pareto ranking. In computational experiments, we examine a wide range of parameter specifications for finding the point in the implementation of hybrid algorithms. Finally the S-MOGLS algorithm is compared with some evolutionary multiobjective optimization algorithms.
引用
收藏
页码:441 / 448
页数:8
相关论文
共 15 条
[1]   A fast and elitist multiobjective genetic algorithm: NSGA-II [J].
Deb, K ;
Pratap, A ;
Agarwal, S ;
Meyarivan, T .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2002, 6 (02) :182-197
[2]   A multi-objective genetic local search algorithm and its application to flowshop scheduling [J].
Ishibuchi, H ;
Murata, T .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART C-APPLICATIONS AND REVIEWS, 1998, 28 (03) :392-403
[3]   Balance between genetic search and local search in memetic algorithms for multiobjective permutation flowshop scheduling [J].
Ishibuchi, H ;
Yoshida, T ;
Murata, T .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2003, 7 (02) :204-223
[4]  
Ishibuchi H, 2003, IEEE C EVOL COMPUTAT, P2254
[5]  
ISHIBUCHI H, 2004, IN PRESS P 2004 GEN
[6]  
ISHIBUCHI H, 2004, INT J HYBRID INTELLI, V1, P22
[8]  
Jaszkiewicz A., 2001, Foundations of Computing and Decision Sciences, V26, P99
[10]  
Knowles J, 2002, IEEE C EVOL COMPUTAT, P711, DOI 10.1109/CEC.2002.1007013