Parallel multicomponent interferometer with a spinor Bose-Einstein condensate

被引:13
作者
Tang, Pengju [1 ]
Peng, Peng [1 ]
Li, Zhihan [1 ]
Chen, Xuzong [1 ]
Li, Xiaopeng [2 ,3 ,4 ]
Zhou, Xiaoji [1 ,5 ]
机构
[1] Peking Univ, Dept Elect, State Key Lab Adv Opt Commun Syst & Network, Beijing 100871, Peoples R China
[2] Fudan Univ, Inst Nanoelect & Quantum Comp, State Key Lab Surface Phys, Shanghai 200433, Peoples R China
[3] Fudan Univ, Dept Phys, Shanghai 200433, Peoples R China
[4] Collaborat Innovat Ctr Adv Microstruct, Nanjing 210093, Jiangsu, Peoples R China
[5] Shanxi Univ, Collaborat Innovat Ctr Extreme Opt, Taiyuan 030006, Shanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
QUANTUM; INTERFERENCE;
D O I
10.1103/PhysRevA.100.013618
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Atom interferometry with high visibility is of high demand for precision measurements. Here, a parallel multicomponent interferometer is achieved by preparing a spin-2 Bose-Einstein condensate of Rb-87 atoms confined in a hybrid magneto-optical trap. After the preparation of a spinor Bose-Einstein condensate with spin degrees of freedom entangled, we observe four spatial interference patterns in each run of measurements corresponding to four hyperfine states we mainly populate in the experiment. The atomic populations in different Zeeman sublevels are made controllably using magnetic-field-pulse induced Majorana transitions. The spatial separation of atom cloud in different hyperfine states is reached by Stern-Gerlach momentum splitting. The high visibility of the interference fringes is reached by designing a proper overlap of the interfering wave packets. Due to uncontrollable phase accumulation in Majorana transitions, the phase of each individual spin is found to be subjected to unreproducible shift in multiple experimental runs. However, the relative phase across different spins is stable, paving a way towards noise-resilient multicomponent parallel interferometers.
引用
收藏
页数:8
相关论文
共 43 条
[1]   Observation of interference between two Bose condensates [J].
Andrews, MR ;
Townsend, CG ;
Miesner, HJ ;
Durfee, DS ;
Kurn, DM ;
Ketterle, W .
SCIENCE, 1997, 275 (5300) :637-641
[2]   Observation of a shape resonance in the collision of two cold Rb-87 atoms [J].
Boesten, HMJM ;
Tsai, CC ;
Gardner, JR ;
Heinzen, DJ ;
Verhaar, BJ .
PHYSICAL REVIEW A, 1997, 55 (01) :636-640
[3]   Physics with coherent matter waves [J].
Bongs, K ;
Sengstock, K .
REPORTS ON PROGRESS IN PHYSICS, 2004, 67 (06) :907-963
[4]   Spin Entanglement Witness for Quantum Gravity [J].
Bose, Sougato ;
Mazumdar, Anupam ;
Morley, Gavin W. ;
Ulbricht, Hendrik ;
Toros, Marko ;
Paternostro, Mauro ;
Geraci, Andrew A. ;
Barker, Peter F. ;
Kim, M. S. ;
Milburn, Gerard .
PHYSICAL REVIEW LETTERS, 2017, 119 (24)
[5]   Bose-Einstein condensates in time dependent traps [J].
Castin, Y ;
Dum, R .
PHYSICAL REVIEW LETTERS, 1996, 77 (27) :5315-5319
[6]   Optics and interferometry with atoms and molecules [J].
Cronin, Alexander D. ;
Schmiedmayer, Joerg ;
Pritchard, David E. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (03) :1051-1129
[7]   Theory of Bose-Einstein condensation in trapped gases [J].
Dalfovo, F ;
Giorgini, S ;
Pitaevskii, LP ;
Stringari, S .
REVIEWS OF MODERN PHYSICS, 1999, 71 (03) :463-512
[8]   Testing general relativity with atom interferometry [J].
Dimopoulos, Savas ;
Graham, Peter W. ;
Hogan, Jason M. ;
Kasevich, Mark A. .
PHYSICAL REVIEW LETTERS, 2007, 98 (11)
[9]   Spatial interference of coherent atomic waves by manipulation of the internal quantum state [J].
Fort, C ;
Maddaloni, P ;
Minardi, F ;
Modugno, M ;
Inguscio, M .
OPTICS LETTERS, 2001, 26 (14) :1039-1041
[10]   Relaxation and Prethermalization in an Isolated Quantum System [J].
Gring, M. ;
Kuhnert, M. ;
Langen, T. ;
Kitagawa, T. ;
Rauer, B. ;
Schreitl, M. ;
Mazets, I. ;
Smith, D. Adu ;
Demler, E. ;
Schmiedmayer, J. .
SCIENCE, 2012, 337 (6100) :1318-1322