Moishezon manifolds whose Picard group is of rank one

被引:3
作者
Bonavero, L
机构
[1] UNIV GRENOBLE 1, MATH LAB, CNRS 188, INST FOURIER, F-38402 ST MARTIN DHERES, FRANCE
[2] ECOLE NORMALE SUPER LYON, UMPA, UMR 128, F-69364 LYON, FRANCE
来源
BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE | 1996年 / 124卷 / 03期
关键词
D O I
10.24033/bsmf.2290
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we use Mori theory to analyze the structure of Moishezon manifolds with Picard group equal to Z, with big canonical bundle, and which become projective after one blow-up. In this context, we study the Mori contraction on the projective model, and we show that in general the center of the blow-up has <<low>> codimension. In dimension 3, the canonical bundle is nef by a result of Kollar. We show that this result is no longer true in dimension 4 or larger than 4 by constructing explicitly some examples, which give also new Moishezon manifolds not satisfying the Demailly-Siu criterion. In dimension 4, we show that the center of the blow-up is a surface, and that our construction is the only possible one when the canonical bundle is not nef; in particular, the center of the blow-up must be P-2 in this last case.
引用
收藏
页码:503 / 521
页数:19
相关论文
共 24 条
[1]   ON EXTREMAL RAYS OF THE HIGHER DIMENSIONAL VARIETIES [J].
ANDO, T .
INVENTIONES MATHEMATICAE, 1985, 81 (02) :347-357
[2]   FANO-VARIETIES OF LINES ON HYPERSURFACES [J].
BARTH, W ;
VANDEVEN, A .
ARCHIV DER MATHEMATIK, 1978, 31 (01) :96-104
[3]  
Barth W., 1984, COMPACT COMPLEX SURF
[4]  
Beltrametti M.C., 1986, TEXTE MATH BERLIN, V92, P24
[5]  
BONAVERO L, 1995, CR ACAD SCI I-MATH, V321, P443
[6]  
BONAVERO L, 1993, CR ACAD SCI I-MATH, V317, P1163
[7]  
BONAVERO L, 1993, IN PRESS J GEOMETRIC, V259
[8]  
BONAVERO L, 1995, THESIS U J FOURIER
[9]  
CLEMENS H, 1983, PUBL MATH-PARIS, P231
[10]  
CLEMENS H, 1988, ASTERISQUE, V166