A new numerical method for variable order fractional functional differential equations

被引:32
|
作者
Li, Xiuying [1 ]
Li, Haixia [2 ]
Wu, Boying [3 ]
机构
[1] Changshu Inst Technol, Dept Math, Suzhou 215500, Jiangsu, Peoples R China
[2] Shandong Water Polytech, Dept Math, Shandong 276826, Peoples R China
[3] Harbin Inst Technol, Dept Math, Harbin 150001, Heilongjiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Reproducing kernel method; Fractional order; Variable order; Initial value problem; REPRODUCING KERNEL-METHOD; BOUNDARY-VALUE-PROBLEMS; APPROXIMATION;
D O I
10.1016/j.aml.2017.01.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this letter, a high order numerical scheme is proposed for solving variable order fractional functional differential equations. Firstly, the problem is approximated by an integer order functional differential equation. The integer order differential equation is then solved by the reproducing kernel method. Numerical examples are given to demonstrate the theoretical analysis and verify the efficiency of the proposed method. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:80 / 86
页数:7
相关论文
共 50 条
  • [1] A new reproducing kernel method for variable order fractional boundary value problems for functional differential equations
    Li, Xiuying
    Wu, Boying
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2017, 311 : 387 - 393
  • [2] An efficient numerical method for variable order fractional functional differential equation
    Yang, Jiabao
    Yao, Huanmin
    Wu, Boying
    APPLIED MATHEMATICS LETTERS, 2018, 76 : 221 - 226
  • [3] A numerical solution for variable order fractional functional differential equation
    Jia, Yun-Tao
    Xu, Min-Qiang
    Lin, Ying-Zhen
    APPLIED MATHEMATICS LETTERS, 2017, 64 : 125 - 130
  • [4] Shifted fractional Jacobi collocation method for solving fractional functional differential equations of variable order
    Abdelkawy, M. A.
    Lopes, Antonio M.
    Babatin, Mohammed M.
    CHAOS SOLITONS & FRACTALS, 2020, 134
  • [5] Fractional-order Chelyshkov wavelet method for solving variable-order fractional differential equations and an application in variable-order fractional relaxation system
    Ngo, Hoa T. B.
    Razzaghi, Mohsen
    Vo, Thieu N.
    NUMERICAL ALGORITHMS, 2023, 92 (03) : 1571 - 1588
  • [6] Fractional-order Chelyshkov wavelet method for solving variable-order fractional differential equations and an application in variable-order fractional relaxation system
    Hoa T. B. Ngo
    Mohsen Razzaghi
    Thieu N. Vo
    Numerical Algorithms, 2023, 92 : 1571 - 1588
  • [7] A Numerical Method for Solving Fractional Differential Equations
    Wang, Yahong
    Zhou, Haili
    Mei, Liangcai
    Lin, Yingzhen
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2022, 2022
  • [8] A numerical method for solving variable-order fractional diffusion equations using fractional-order Taylor wavelets
    Vo Thieu, N.
    Razzaghi, Mohsen
    Toan Phan Thanh
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2021, 37 (03) : 2668 - 2686
  • [9] Numerical Solutions of Fractional Variable Order Differential Equations via Using Shifted Legendre Polynomials
    Shah, Kamal
    Naz, Hafsa
    Abdeljawad, Thabet
    Khan, Aziz
    Alqudah, Manar A.
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2023, 134 (02): : 941 - 955
  • [10] Fractional order iterative functional differential equations with parameter
    Wang, JinRong
    Feckan, Michal
    Zhou, Yong
    APPLIED MATHEMATICAL MODELLING, 2013, 37 (08) : 6055 - 6067