Thermal desorption of gases and solvents from graphite and carbon nanotube surfaces

被引:157
作者
Ulbricht, Hendrik
Zacharia, Renju
Cindir, Nesibe
Hertel, Tobias
机构
[1] Univ Vienna, Inst Expt Phys, A-1090 Vienna, Austria
[2] Chonbuk Natl Univ, Nanomat Res Ctr, Chonju 561756, South Korea
[3] Chonbuk Natl Univ, Sch Chem Engn & Technol, Chonju 561756, South Korea
[4] Univ Utrecht, Dept Chem, NL-3584 CH Utrecht, Netherlands
[5] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA
[6] Vanderbilt Univ, Inst Nanoscale Sci & Technol, Nashville, TN 37235 USA
关键词
graphite; carbon nanotubes; temperature programmed desorption; adsorption properties;
D O I
10.1016/j.carbon.2006.05.040
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The interaction of 23 gases and solvents with the basal plane of highly oriented pyrolytic graphite (HOPG) and with single-wall carbon nanotube (SWCNT) samples is studied using thermal desorption spectroscopy. Pre-exponential frequency factors used for analysis of desorption traces are obtained from vapor pressure data. Activation energies for desorption at monolayer coverage are determined using the Redhead peak-maximum method. Binding energies of non-polar adsorbates to the HOPG surface are found to scale with the adsorbate polarizability providing clear evidence for the van der Waals character of the interaction. Low coverage desorption temperatures on SWCNT samples are found to be 50-100% higher than on HOPG. Such increase has previously been attributed to physisorption in higher coordinated sites such as grooves on the external SWCNT rope surfaces. Polar adsorbates on the other hand typically desorb at much higher temperatures from SWCNT samples which is here tentatively attributed to stronger interaction with defect sites. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2931 / 2942
页数:12
相关论文
共 61 条
[1]   VAPOR-PRESSURE OF BUCKMINSTERFULLERENE [J].
ABREFAH, J ;
OLANDER, DR ;
BALOOCH, M ;
SIEKHAUS, WJ .
APPLIED PHYSICS LETTERS, 1992, 60 (11) :1313-1314
[2]   Carbon nanotubes: A thermoelectric nano-nose [J].
Adu, CKW ;
Sumanasekera, GU ;
Pradhan, BK ;
Romero, HE ;
Eklund, PC .
CHEMICAL PHYSICS LETTERS, 2001, 337 (1-3) :31-35
[3]  
Antoine C., 1888, C. R. Chim, V107, P681
[4]   Thermodynamics and structure of hydrogen, methane, argon, oxygen, and carbon dioxide adsorbed on single-wall carbon nanotube bundles [J].
Bienfait, M ;
Zeppenfeld, P ;
Dupont-Pavlovsky, N ;
Muris, M ;
Johnson, MR ;
Wilson, T ;
DePies, M ;
Vilches, OE .
PHYSICAL REVIEW B, 2004, 70 (03) :035410-1
[5]   COMPLETE AND INCOMPLETE WETTING OF KRYPTON AND OXYGEN ON GRAPHITE - REENTRANT TYPE-2 GROWTH ON A SCALE OF SUBSTRATE STRENGTH [J].
BIENFAIT, M ;
SEGUIN, JL ;
SUZANNE, J ;
LERNER, E ;
KRIM, J ;
DASH, JG .
PHYSICAL REVIEW B, 1984, 29 (02) :983-987
[6]   KINETICS OF ADSORPTION AND DESORPTION USING AUGER-ELECTRON SPECTROSCOPY - APPLICATION TO XENON COVERED(0001) GRAPHITE [J].
BIENFAIT, M ;
VENABLES, JA .
SURFACE SCIENCE, 1977, 64 (02) :425-436
[7]   INTERACTIONS OF DIATOMIC-MOLECULES WITH GRAPHITE [J].
BOJAN, MJ ;
STEELE, WA .
LANGMUIR, 1987, 3 (06) :1123-1127
[8]   Charge transfer from ammonia physisorbed on nanotubes -: art. no. 218301 [J].
Bradley, K ;
Gabriel, JCP ;
Briman, M ;
Star, A ;
Grüner, G .
PHYSICAL REVIEW LETTERS, 2003, 91 (21) :1-218301
[9]   WATER-ADSORPTION ON GRAPHITE(0001) [J].
CHAKAROV, DV ;
OSTERLUND, L ;
KASEMO, B .
VACUUM, 1995, 46 (8-10) :1109-1112
[10]   Carbon nanotubule membranes for electrochemical energy storage and production [J].
Che, GL ;
Lakshmi, BB ;
Fisher, ER ;
Martin, CR .
NATURE, 1998, 393 (6683) :346-349