Constructing a ZnIn2S4 nanoparticle/MoS2-RGO nanosheet 0D/2D heterojunction for significantly enhanced visible-light photocatalytic H2 production

被引:51
|
作者
Guan, Zhongjie [1 ,2 ]
Wang, Peng [1 ]
Li, Qiuye [1 ]
Li, Guoqiang [2 ]
Yang, Jianjun [1 ]
机构
[1] Henan Univ, Collaborat Innovat Ctr Nano Funct Mat & Applicat, Natl & Local Joint Engn Res Ctr Appl Technol Hybr, Kaifeng 475004, Peoples R China
[2] Henan Univ, Sch Phys Elect, Key Lab Photovolta Mat Henan Prov, Kaifeng 475004, Peoples R China
基金
中国国家自然科学基金;
关键词
HIGHLY EFFICIENT PHOTOCATALYST; SHAPE-CONTROLLED SYNTHESIS; REDUCED GRAPHENE OXIDE; HYDROGEN EVOLUTION; HEXAGONAL ZNIN2S4; WATER; HETEROSTRUCTURE; SEMICONDUCTOR; COCATALYST; FACILE;
D O I
10.1039/c8dt00946e
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
A zero-dimensional (0D)/two-dimensional (2D) heterojunction has an excellent advantage of boosting the photo-generated carrier separation and obtaining enhanced photocatalytic activities. Here, a ZnIn2S4 nanoparticle/MoS2-RGO nanosheet 0D/2D heterojunction was prepared by a rapid and low temperature hydrothermal method. TEM characterization results reveal that ZnIn2S4 nanoparticles are uniformly dispersed on the surface of MoS2-RGO nanosheets, which can provide abundant active sites and shorten the charge-migration distance, while the MoS2-RGO nanosheet acts as a support to avoid the aggregation of 0D ZnIn2S4 nanoparticles and also serves as a low-cost cocatalyst for effective hydrogen evolution. Through optimizing the MoS2-RGO composition and content, the highest hydrogen evolution rate of 425.1 mu mol g(-1) h(-1) was obtained over the ZnIn2S4/MoS2-RGO 0D/2D heterojunction photocatalyst under visible light irradiation (lambda > 420 nm), which is about 34.6 times higher than that of pure ZnIn2S4. Efficient charge separation can be attributed to the significantly enhanced photocatalytic performance, which originates from the favorable properties of the ZnIn2S4/MoS2-RGO 0D/2D heterojunction. This study provides an effective method to improve the photocatalytic performance of the ZnIn2S4 photocatalyst based on the 0D/2D heterojunction.
引用
收藏
页码:6800 / 6807
页数:8
相关论文
共 50 条
  • [1] 0D/2D CeO2/ZnIn2S4 Z-scheme heterojunction for visible-light-driven photocatalytic H2 evolution
    Zhang, Min
    Yao, Jiacheng
    Arif, Muhammad
    Qiu, Bo
    Yin, Hongfei
    Liu, Xiaoheng
    Chen, Shen-ming
    APPLIED SURFACE SCIENCE, 2020, 526
  • [2] Boosting Visible-Light Photocatalytic Hydrogen Evolution with an Efficient CuInS2/ZnIn2S4 2D/2D Heterojunction
    Guan, Zhongjie
    Pan, Jingwen
    Li, Qiuye
    Li, Guoqiang
    Yang, Jianjun
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2019, 7 (08): : 7736 - 7742
  • [3] Constructing a 2D/2D heterojunction of MoSe2/ZnIn2S4 nanosheets for enhanced photocatalytic hydrogen evolution
    Feng, Ting
    Zhao, Kaili
    Li, Haiyan
    Wang, Wei
    Dong, Bohua
    Cao, Lixin
    CRYSTENGCOMM, 2021, 23 (13) : 2547 - 2555
  • [4] Rational design of 2D/2D ZnIn2S4/C3N4 heterojunction photocatalysts for enhanced photocatalytic H2 production
    Guan, Peng
    Han, Peigeng
    Yang, Bin
    Yin, Hang
    Liu, Jianyong
    Yang, Songqiu
    NEW JOURNAL OF CHEMISTRY, 2023, 47 (14) : 6583 - 6590
  • [5] Hierarchical 0D NiSe2/2D ZnIn2S4 Nanosheet-Assembled Microflowers for Enhanced Photocatalytic Hydrogen Evolution
    Lai, Lijuan
    Xing, Fangshu
    Cheng, Chuchu
    Huang, Caijin
    ADVANCED MATERIALS INTERFACES, 2021, 8 (09):
  • [6] Constructing 2D/2D heterostructure of ZnIn2S4 nanosheets on cobalt doped MoS2 for enhanced photocatalytic hydrogen production performance
    Zhang, Ning
    Zhai, Zhuhe
    Yan, Yueru
    Feng, Xuejiao
    Chen, Shengqiang
    Zhao, Yafei
    Zhang, Bing
    SEPARATION AND PURIFICATION TECHNOLOGY, 2025, 362
  • [7] 2D/2D g-C3N4/MgFe MMO nanosheet heterojunctions with enhanced visible-light photocatalytic H2 production
    Shi, Jingjing
    Li, Shuangde
    Wang, Fengming
    Gao, Lina
    Li, Yanmei
    Zhang, Xiaorang
    Lu, Jun
    JOURNAL OF ALLOYS AND COMPOUNDS, 2018, 769 : 611 - 619
  • [8] Ultrathin 2D/2D ZnIn2S4/MoS2 hybrids for boosted photocatalytic hydrogen evolution under visible light
    Huang, Lixian
    Han, Bin
    Huang, Xihe
    Liang, Shujie
    Deng, Ziqi
    Chen, Weiyi
    Peng, Miao
    Deng, Hong
    JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 798 : 553 - 559
  • [9] Construction of a 0D/2D heterojunction based on ZnO nanoparticles and ZnIn2S4 nanosheets to improve photocatalytic degradation efficiency
    Yang, Nan Qing
    Li, Jin
    OPTICAL MATERIALS, 2021, 115
  • [10] AgIn5S8 nanoparticles anchored on 2D layered ZnIn2S4 to form OD/2D heterojunction for enhanced visible-light photocatalytic hydrogen evolution
    Guan, Zhongjie
    Xu, Zhiqiang
    Li, Qiuye
    Wang, Peng
    Li, Guoqiang
    Yang, Jianjun
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2018, 227 : 512 - 518