Semi-supervised word polarity identification in resource-lean languages

被引:19
作者
Dehdarbehbahani, Iman [1 ]
Shakery, Azadeh [1 ,2 ]
Faili, Heshaam [1 ,2 ]
机构
[1] Univ Tehran, Coll Engn, Sch Elect & Comp Engn, Tehran, Iran
[2] Inst Res Fundamental Sci IPM, Sch Comp Sci, Tehran, Iran
关键词
Sentiment lexicon; Random walk model; Semi-supervised polarity identification;
D O I
10.1016/j.neunet.2014.05.018
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Sentiment words, as fundamental constitutive parts of subjective sentences, have a substantial effect on analysis of opinions, emotions and beliefs. Most of the proposed methods for identifying the semantic orientations of words exploit rich linguistic resources such as WordNet, subjectivity corpora, or polarity tagged words. Shortage of such linguistic resources in resource-lean languages affects the performance of word polarity identification in these languages. In this paper, we present a method which exploits a language with rich subjectivity analysis resources (English) to identify the polarity of words in a resource-lean foreign language. The English WordNet and a sparse foreign WordNet infrastructure are used to create a heterogeneous, multilingual and weighted semantic network. To identify the semantic orientation of foreign words, a random walk based method is applied to the semantic network along with a set of automatically weighted English positive and negative seeds. In a post-processing phase, synonym and antonym relations in the foreign WordNet are used to filter the random walk results. Our experiments on English and Persian languages show that the proposed method can outperform state-of-the-art word polarity identification methods in both languages. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:50 / 59
页数:10
相关论文
共 35 条
[1]  
[Anonymous], ACL
[2]  
[Anonymous], 2006, Proceedings of the Conference on Empirical Methods in Natural Language Processing
[3]  
[Anonymous], 2010, P ACM INT C INF KNOW
[4]  
[Anonymous], 2011, P 49 ANN M ASS COMP
[5]  
[Anonymous], 2012, Synth. Lectures Human Lang. Technol., DOI [10.2200/S00416ED1V01Y201204HLT016, DOI 10.2200/S00416ED1V01Y201204HLT016]
[6]  
[Anonymous], P 20 INT C COMPUTATI, DOI DOI 10.3115/1220355.1220555
[7]  
[Anonymous], 2004, Using WordNet to Measure Semantic Orientations of Adjectives
[8]  
Cambria Erik, 2012, Cognitive Behavioural Systems (COST 2012). International Training School. Revised Selected Papers, P144, DOI 10.1007/978-3-642-34584-5_11
[9]  
Cambria E., 2014, AAAI 14, P14
[10]   Jumping NLP Curves: A Review of Natural Language Processing Research [J].
Cambria, Erik ;
White, Bebo .
IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE, 2014, 9 (02) :48-57