Scalable synthesis of high-performance molybdenum diselenide-graphite nanocomposite anodes for lithium-ion batteries

被引:20
|
作者
Kim, Hyeongi [1 ]
Quoc Hai Nguyen [1 ,2 ]
Kim, Il Tae [1 ]
Hur, Jaehyun [1 ]
机构
[1] Gachon Univ, Dept Chem & Biol Engn, Seongnam 13120, Gyeonggi, South Korea
[2] Baria Vungtau Univ, Dept Chem Technol, Vung Tau, Vietnam
基金
新加坡国家研究基金会;
关键词
Molybdenum diselenide; High-energy mechanical milling; Graphite; Solid lubrication; Anode; Lithium-ion batteries; NANOSHEET-ASSEMBLED MOSE2; REDUCED GRAPHENE OXIDE; LONG-CYCLE-LIFE; RATIONAL DESIGN; ENERGY-STORAGE; LAYERED MOSE2; CARBON; HYBRID; NANOSTRUCTURES; NANOPARTICLES;
D O I
10.1016/j.apsusc.2019.03.165
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Molybdenum diselenide-based carbon composites were prepared by a high-energy mechanical milling (HEMM) for anodes in lithium-ion batteries. In this paper, we have reported the effect of the type of carbonaceous matrix, for example, 2D graphite, 1D carbon nanotube, and 0D amorphous carbon, on the performance of MoSe2-carbon nanocomposite anodes. The combination of MoSe2 and graphite showed the best electrochemical performance in terms of cycling stability and rate capability. This improvement is associated with the increased surface area along both lateral and vertical directions of MoSe2, and effective mixing between MoSe2 and graphite due to HEMM. The facile exfoliation, size reduction, and homogeneous mixing of MoSe2 upon the addition of graphite, were characterized by XRD, Raman spectroscopy, BET, SEM, and TEM. The MoSe2-graphite nanocomposite ((2D)MoSe2@(2D)Gr) exhibited enhanced Li storage (a reversible discharge capacity of 909 mAh g(-1) at 100 mA g(-1) after 200 cycles) and rate performance (611 mAh g(-1) at a current density of 3 A g(-1)) as compared to other MoSe2-carbon nanocomposites, as well as pure MoSe2. The reduced charge transfer resistance, increased diffusivity, and improved mechanical stability as confirmed by electrochemical impedance spectroscopy (EIS) and ex-situ SEM, further served to demonstrate the superiority of the (2D)MoSe2 @(2D)Gr electrode.
引用
收藏
页码:1196 / 1205
页数:10
相关论文
共 50 条
  • [31] Supramolecular polymers as high-performance binders for silicon anodes in lithium-ion batteries
    Coskun, Ali
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 251
  • [32] Natural Soft/Rigid Superlattices as Anodes for High-Performance Lithium-Ion Batteries
    Bai, Wei
    Gao, Jingyu
    Li, Kun
    Wang, Gongrui
    Zhou, Tengfei
    Li, Pengju
    Qin, Shengyong
    Zhang, Genqiang
    Guo, Zaiping
    Xiao, Chong
    Xie, Yi
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (40) : 17494 - 17498
  • [33] Solvothermal Synthesis of a Molybdenum Disulfide/Reduced Porous Graphene Oxide Nanocomposite as a High-Performance Anode Material for Lithium-Ion Batteries
    Bae, Youngkuk
    Seong, Chae-Yong
    Yoo, Suyeon
    Park, Seung-Keun
    Piao, Yuanzhe
    ENERGY TECHNOLOGY, 2017, 5 (08) : 1200 - 1207
  • [34] Self-templating synthesis of heteroatom-doped large-scalable carbon anodes for high-performance lithium-ion batteries
    Yasin, Ghulam
    Arif, Muhammad
    Ma, Jiameng
    Ibraheem, Shumaila
    Yu, Donglin
    Zhang, Lipeng
    Liu, Dong
    Dai, Liming
    INORGANIC CHEMISTRY FRONTIERS, 2022, 9 (06) : 1058 - 1069
  • [35] An interconnected and scalable hollow Si-C nanospheres/graphite composite for high-performance lithium-ion batteries
    Gao, Jiafeng
    Zuo, Songlin
    Liu, He
    Jiang, Qiwen
    Wang, Chenhao
    Yin, Huanhuan
    Wang, Ziqi
    Wang, Jie
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2022, 624 : 555 - 563
  • [36] Facile Synthesis of FeS@C Particles Toward High-Performance Anodes for Lithium-Ion Batteries
    Lin, Xuanni
    Yang, Zhuoyi
    Guo, Anru
    Liu, Dong
    NANOMATERIALS, 2019, 9 (10)
  • [37] Synthesis of Sn/MoS2/C composites as high-performance anodes for lithium-ion batteries
    Li, Qing-Yu
    Pan, Qi-Chang
    Yang, Guan-Hua
    Lin, Xi-Le
    Yan, Zhi-Xiong
    Wang, Hong-Qiang
    Huang, You-Guo
    JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (40) : 20375 - 20381
  • [38] Facile controlled synthesis of MnO2 nanostructures for high-performance anodes in lithium-ion batteries
    Liu, Lei
    Shen, Zhigang
    Zhang, Xiaojing
    Ma, Shulin
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2019, 30 (02) : 1480 - 1486
  • [39] A facile synthesis of mesoporous graphene-tin composites as high-performance anodes for lithium-ion batteries
    Yue, Wenbo
    Yang, Sheng
    Liu, Yunling
    Yang, Xiaojing
    MATERIALS RESEARCH BULLETIN, 2013, 48 (04) : 1575 - 1580
  • [40] Designed Synthesis of CoO/CuO/rGO Ternary Nanocomposites as High-Performance Anodes for Lithium-Ion Batteries
    Hui Zhang
    Yi-Fan Wang
    Wei-Liang Liu
    Fan-Gong Kong
    Man-Man Ren
    Shou-Juan Wang
    Xin-Qiang Wang
    Xiu-Lan Duan
    Dan Peng
    JOM, 2018, 70 : 1793 - 1799