Boundedness of pluricanonical maps of varieties of general type

被引:122
作者
Hacon, Christopher D.
McKernan, James
机构
[1] Univ Utah, Dept Math, Salt Lake City, UT 84112 USA
[2] Univ Calif Santa Barbara, Dept Math, Santa Barbara, CA 93106 USA
关键词
D O I
10.1007/s00222-006-0504-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using the techniques of [20] and [10], we prove that certain log forms may be lifted from a divisor to the ambient variety. As a consequence of this result, following [22], we show that: For any positive integer n there exists an integer r(n) such that if X is a smooth projective variety of general type and dimension n, then phi(rKX) : X --> P(H-0(O-X(rK(X)))) is birational for all r >= Nr(n) .
引用
收藏
页码:1 / 25
页数:25
相关论文
共 23 条
[11]   HIGHER DIRECT IMAGES OF DUALIZING SHEAVES .1. [J].
KOLLAR, J .
ANNALS OF MATHEMATICS, 1986, 123 (01) :11-42
[12]  
KOLLAR J, 1992, 2 SUMM SEM ALG GEOM, V211
[13]  
KOLLAR J, 1998, CAMBR TRACTS MATH, V134
[14]  
LAZARSFELD R, 2004, SERIES MODERN SURVEY, V49
[15]  
LU S, MATHAG0211029
[16]   PLURIGENERA OF REGULAR THREEFOLDS [J].
LUO, T .
MATHEMATISCHE ZEITSCHRIFT, 1994, 217 (01) :37-46
[17]   Global holomorphic 2-forms and pluricanonical systems on threefolds [J].
Luo, T .
MATHEMATISCHE ANNALEN, 2000, 318 (04) :707-730
[18]   A FINITENESS PROPERTY OF VARIETIES OF GENERAL TYPE [J].
MAEHARA, K .
MATHEMATISCHE ANNALEN, 1983, 262 (01) :101-123
[19]   ON PLURICANONICAL MAPS FOR 3-FOLDS OF GENERAL TYPE [J].
MATSUKI, K .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 1986, 38 (02) :339-359
[20]   Invariance of plurigenera [J].
Siu, YT .
INVENTIONES MATHEMATICAE, 1998, 134 (03) :661-673