COMPLEX-VALUED NEURAL NETWORKS FOR POLARIMETRIC SAR SEGMENTATION USING PAULI REPRESENTATION

被引:4
作者
Barrachina, J. A. [1 ,2 ]
Ren, C. [1 ]
Morisseau, C. [2 ]
Vieillard, G. [2 ]
Ovarlez, J. -P. [1 ,2 ]
机构
[1] Univ Paris Saclay, Cent Supelec, SONDRA, F-91192 Gif Sur Yvette, France
[2] Univ Paris Saclay, DEMR, ONERA, F-91120 Palaiseau, France
来源
2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022) | 2022年
关键词
Polarimetric Synthetic Aperture Radar; Complex-Valued Neural Network; Complex-Valued Fully Convolutional Neural Network; Pauli representation;
D O I
10.1109/IGARSS46834.2022.9883251
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
In the context of a growing popularity of Complex-Valued Neural Network (CVNN) for Polarimetric Synthetic Aperture Radar (PolSAR) applications, the input features often play a central role in classification and segmentation tasks. The so-called coherency matrix, widely used in the radar community, might limit the full potential of CVNNs. Particularly, complex-valued Pauli representation contains richer information than the coherency matrix. And the spatial coherent/local summation can also be performed by the first convolutional layers of CVNN. Letting this network learn itself the filters weights will further enhance its performance. In this paper, we propose a Complex-Valued Fully Convolutional Neural Network (CV-FCNN) which directly infers on the Pauli vector representation rather than on the coherency matrix to perform PolSAR image segmentation. The performance of CV-FCNN is then statistically evaluated on Bretigny PolSAR dataset and compared against an equivalent real-valued model.
引用
收藏
页码:4984 / 4987
页数:4
相关论文
共 21 条
[1]  
[Anonymous], 2013, Complex-valued neural networks: Advances and applications
[2]   ABOUT THE EQUIVALENCE BETWEEN COMPLEX-VALUED AND REAL-VALUED FULLY CONNECTED NEURAL NETWORKS - APPLICATION TO POLINSAR IMAGES [J].
Barrachina, J. A. ;
Ren, C. ;
Vieillard, G. ;
Morisseau, C. ;
Ovarlez, J-P .
2021 IEEE 31ST INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2021,
[3]   COMPLEX-VALUED VS. REAL-VALUED NEURAL NETWORKS FOR CLASSIFICATION PERSPECTIVES: AN EXAMPLE ON NON-CIRCULAR DATA [J].
Barrachina, J. A. ;
Ren, C. ;
Morisseau, C. ;
Vieillard, G. ;
Ovarlez, J-P .
2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, :2990-2994
[4]  
Barrachina J Agustin, 2022, NEGU93 POLSAR CVNN A, DOI [10.5281/zen- odo.5821229, DOI 10.5281/ZEN-ODO.5821229]
[5]  
Bassey J., 2021, ARXIV210112249
[6]   Pixel-Wise PolSAR Image Classification via a Novel Complex-Valued Deep Fully Convolutional Network [J].
Cao, Yice ;
Wu, Yan ;
Zhang, Peng ;
Liang, Wenkai ;
Li, Ming .
REMOTE SENSING, 2019, 11 (22)
[7]  
Chambers J. M., 2018, GRAPHICAL METHODS DA, DOI [10.1201/9781351072304, DOI 10.1201/9781351072304]
[8]   Statistical Classification for Heterogeneous Polarimetric SAR Images [J].
Formont, Pierre ;
Pascal, Frederic ;
Vasile, Gabriel ;
Ovarlez, Jean-Philippe ;
Ferro-Famil, Laurent .
IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2011, 5 (03) :567-576
[9]  
Hansch R., 2009, ISPRS WORKSH HIGH RE, V38, P4
[10]  
Hansen R., 2010, 8 EUR C SYNTH AP RAD, P1