Dynamical Analysis and Circuit Simulation of a New Fractional-Order Hyperchaotic System and Its Discretization

被引:37
作者
El-Sayed, A. M. A. [1 ]
Elsonbaty, A. [2 ]
Elsadany, A. A. [3 ]
Matouk, A. E. [4 ]
机构
[1] Univ Alexandria, Dept Math, Fac Sci, Alexandria, Egypt
[2] Mansoura Univ, Fac Engn, Dept Math & Engn Phys, Mansoura 35516, Egypt
[3] Suez Canal Univ, Dept Basic Sci, Fac Comp & Informat, Ismailia 41522, Egypt
[4] Mansoura Univ, Fac Sci, Dept Math, Mansoura 35516, Egypt
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2016年 / 26卷 / 13期
关键词
Fractional-order hyperchaotic system; pitchfork bifurcation; Hopf bifurcation; chaos; circuit implementation; DIFFERENTIAL-EQUATIONS; PREDATOR-PREY; CHAOS CONTROL; SYNCHRONIZATION; MODEL; VAN; BIFURCATIONS; REALIZATION; BEHAVIORS;
D O I
10.1142/S0218127416502229
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper presents an analytical framework to investigate the dynamical behavior of a new fractional-order hyperchaotic circuit system. A sufficient condition for existence, uniqueness and continuous dependence on initial conditions of the solution of the proposed system is derived. The local stability of all the system's equilibrium points are discussed using fractional Routh-Hurwitz test. Then the analytical conditions for the existence of a pitchfork bifurcation in this system with fractional-order parameter less than 1/3 are provided. Conditions for the existence of Hopf bifurcation in this system are also investigated. The dynamics of discretized form of our fractional-order hyperchaotic system are explored. Chaos control is also achieved in discretized system using delay feedback control technique. The numerical simulation are presented to confirm our theoretical analysis via phase portraits, bifurcation diagrams and Lyapunov exponents. A text encryption algorithm is presented based on the proposed fractional-order system. The results show that the new system exhibits a rich variety of dynamical behaviors such as limit cycles, chaos and transient phenomena where fractional-order derivative represents a key parameter in determining system qualitative behavior.
引用
收藏
页数:35
相关论文
共 69 条
[1]   Synchronization between fractional-order Ravinovich-Fabrikant and Lotka-Volterra systems [J].
Agrawal, S. K. ;
Srivastava, M. ;
Das, S. .
NONLINEAR DYNAMICS, 2012, 69 (04) :2277-2288
[2]   On fractional order differential equations model for nonlocal epidemics [J].
Ahmed, E. ;
Elgazzar, A. S. .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2007, 379 (02) :607-614
[3]   Equilibrium points, stability and numerical solutions of fractional-order predator-prey and rabies models [J].
Ahmed, E. ;
El-Sayed, A. M. A. ;
El-Saka, H. A. A. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 325 (01) :542-553
[4]   Dynamics, Analysis and Implementation of a Multiscroll Memristor-Based Chaotic Circuit [J].
Alombah, N. Henry ;
Fotsin, Hilaire ;
Ngouonkadi, E. B. Megam ;
Nguazon, Tekou .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2016, 26 (08)
[5]  
Anguelov R., 2009, Conf. Publ, V2009, P34, DOI [10.3934/PROC.2009.2009.34, DOI 10.3934/PROC.2009.2009.34]
[6]  
[Anonymous], 1997, SYST ANAL MODELLING
[7]  
[Anonymous], 2015, EURASIP J WIRELESS C
[8]  
[Anonymous], 2010, J NONLINEAR SYST APP
[9]  
[Anonymous], INT J CIRC THEORY AP
[10]  
[Anonymous], 2011, J FRACT CALC APPL