Analysis of an in-plane electromagnetic energy harvester with integrated magnet array

被引:28
|
作者
Han, Mengdi [1 ]
Li, Zhongliang [1 ]
Sun, Xuming [1 ]
Zhang, Haixia [1 ]
机构
[1] Peking Univ, Inst Microelect, Natl Key Lab Sci & Technol Micronano Fabricat, Beijing 100871, Peoples R China
基金
中国国家自然科学基金; 北京市自然科学基金;
关键词
Electromagnetic energy harvester; In-plane movement; Magnet array; CoNiMnP electroplating; GENERATOR; POWER; ELECTRODEPOSITION; TRANSDUCER; VIBRATIONS;
D O I
10.1016/j.sna.2014.08.008
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, a novel MEMS electromagnetic energy harvester is designed, fabricated and tested. In-plane operation mode is utilized in the device to induce voltage in the coils, which enhances the changing rate of magnetic flux density across the coils. In order to produce larger magnetic flux density across the coil, magnetic properties of permanent magnets are simulated and optimized. Transient analysis of the induced voltage is conducted to prove the effectiveness of structural design. Comparison with the out-of-plane operation modes is carried out in the simulation, indicating that the in-plane operation mode not only enlarges the output, but also can make full use of the large vibration amplitude. In the fabrication process, instead of manually assembling bulk magnets, CoNiMnP hard magnetic alloy is electroplated onto the vibration plate. This method is MEMS compatible, which not only increases the production efficiency but also condenses the device's volume to 67.5 mm(3). Through experimental measurement, the proposed structure with integrated magnet array can generate 0.98 mV peak voltage at the frequency of 48 Hz. The maximum peak power density of this device reaches to 0.16 mu W/cm(3) with a 15.8 Omega external resistance. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:38 / 46
页数:9
相关论文
共 50 条
  • [31] Performance Analysis of a Ferrofluid-Based Electromagnetic Energy Harvester
    Liu, Qi
    Daqaq, Mohammed F.
    Li, Gang
    IEEE TRANSACTIONS ON MAGNETICS, 2018, 54 (05)
  • [32] A novel design of an array of pendulum-based electromagnetic broadband vibration energy harvester
    Rajarathinam, Murugesan
    Awrejcewicz, Jan
    Ali, Shaikh Faruque
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2024, 208
  • [33] An Electrically Tunable Low Frequency Electromagnetic Energy Harvester
    Mallick, Dhiman
    Roy, Saibal
    28TH EUROPEAN CONFERENCE ON SOLID-STATE TRANSDUCERS (EUROSENSORS 2014), 2014, 87 : 771 - 774
  • [34] Design and analysis of a pendulum-based electromagnetic energy harvester using antiphase motion
    Lee, Byung-Chul
    Chung, Gwiy-Sang
    IET RENEWABLE POWER GENERATION, 2016, 10 (10) : 1625 - 1630
  • [35] Electromagnetic Vibration Energy Harvesting with High Power Density using a Magnet Array
    Tang, Xiudong
    Lin, Teng
    Zuo, Lei
    ACTIVE AND PASSIVE SMART STRUCTURES AND INTEGRATED SYSTEMS 2012, 2012, 8341
  • [36] On the Modeling and Optimization of an Electromagnetic Energy Harvester
    Schmitt, Airton J., Jr.
    Cordioli, Julio A.
    Braga, Danilo
    Ferreira da Luz, Mauricio V.
    ACTIVE AND PASSIVE SMART STRUCTURES AND INTEGRATED SYSTEMS XVII, 2023, 12483
  • [37] An experimentally validated electromagnetic energy harvester
    Elvin, Niell G.
    Elvin, Alex A.
    JOURNAL OF SOUND AND VIBRATION, 2011, 330 (10) : 2314 - 2324
  • [38] PiezoMEMS Nonlinear Low Acceleration Energy Harvester with an Embedded Permanent Magnet
    Jackson, Nathan
    MICROMACHINES, 2020, 11 (05)
  • [39] Design, Analysis, and Evaluation of a Compact Electromagnetic Energy Harvester from Water Flow for Remote Sensors
    Wang, Tao
    Zhang, Yunce
    ENERGIES, 2018, 11 (06):
  • [40] Electromagnetic energy harvester for harvesting energy from low-frequency vibration
    Zhang, K.
    Su, Y.
    Ding, J.
    Zhang, Z.
    2018 IEEE INTERNATIONAL MAGNETIC CONFERENCE (INTERMAG), 2018,