Euclid preparation: X. The Euclid photometric-redshift challenge

被引:58
作者
Desprez, G. [1 ]
Paltani, S. [1 ]
Coupon, J. [1 ]
Almosallam, I. [2 ,3 ,4 ]
Alvarez-Ayllon, A. [1 ]
Amaro, V. [5 ]
Brescia, M. [6 ]
Brodwin, M. [7 ]
Cavuoti, S. [6 ,8 ,9 ]
De Vicente-Albendea, J. [10 ]
Fotopoulou, S. [11 ]
Hatfield, P. W. [12 ]
Hartley, W. G. [1 ]
Ilbert, O. [13 ]
Jarvis, M. J. [12 ]
Longo, G. [8 ,9 ]
Rau, M. M. [14 ]
Saha, R. [7 ]
Speagle, J. S. [15 ]
Tramacere, A. [1 ]
Castellano, M. [16 ]
Dubath, F. [1 ]
Galametz, A. [1 ]
Kuemmel, M. [17 ]
Laigle, C. [18 ,19 ]
Merlin, E. [16 ]
Mohr, J. J. [17 ,20 ]
Pilo, S. [16 ]
Salvato, M. [20 ]
Andreon, S. [21 ]
Auricchio, N. [22 ]
Baccigalupi, C. [23 ,24 ,25 ]
Balaguera-Antolinez, A. [26 ,27 ]
Baldi, M. [22 ,28 ,29 ]
Bardelli, S. [22 ]
Bender, R. [17 ,20 ]
Biviano, A. [25 ,30 ]
Bodendorf, C. [20 ]
Bonino, D. [31 ]
Bozzo, E. [1 ]
Branchini, E. [16 ,32 ,33 ]
Brinchmann, J. [34 ]
Burigana, C. [29 ,35 ,36 ]
Cabanac, R. [37 ]
Camera, S. [31 ,38 ,39 ]
Capobianco, V. [31 ]
Cappi, A. [22 ,40 ]
Carbone, C. [41 ]
Carretero, J. [42 ]
Carvalho, C. S. [43 ]
机构
[1] Univ Geneva, Dept Astron, Ch Ecogia 16, CH-1290 Versoix, Switzerland
[2] Saudi Informat Technol Co, Riyadh 12382, Saudi Arabia
[3] King Abdulaziz City Sci & Technol, Riyadh 11442, Saudi Arabia
[4] Informat Engn, Parks Rd, Oxford OX1 3PJ, England
[5] Sun Yat Sen Univ, Sch Phys & Astron, Zhuhai Campus, Guangzhou 519082, Guangdong, Peoples R China
[6] INAF, Osservatorio Astron Capodimonte, Via Moiariello 16, I-80131 Naples, Italy
[7] Univ Missouri, Dept Phys & Astron, 5110 Rockhill Rd, Kansas City, MO 64110 USA
[8] Univ Federico II, Dept Phys E Pancini, Via Cinthia 6, I-80126 Naples, Italy
[9] INFN, Sect Naples, Via Cinthia 6, I-80126 Naples, Italy
[10] Ctr Invest Energet Medioambient & Tecnol CIEMAT, Avenida Complutense 40, Madrid 28040, Spain
[11] Univ Bristol, Sch Phys, HH Wills Phys Lab, Tyndall Ave, Bristol BS8 1TL, Avon, England
[12] Univ Oxford, Dept Phys, Keble Rd, Oxford OX1 3RH, England
[13] Aix Marseille Univ, CNRS, CNES, LAM, Marseille, France
[14] Carnegie Mellon Univ, Dept Phys, McWilliams Ctr Cosmol, Pittsburgh, PA 15213 USA
[15] Ctr Astrophys Harvard & Smithsonian, 60 Garden St, Cambridge, MA 02138 USA
[16] INAF, Osservatorio Astron Roma, Via Frascati 33, I-00078 Monte Porzio Catone, Italy
[17] Ludwig Maximilians Univ Munchen, Fak Phys, Univ Sternwarte Munchen, Scheinerstr 1, D-81679 Munich, Germany
[18] UPMC Univ Paris 6, Sorbonne Univ, 98 Bis Bd Arago, F-75014 Paris, France
[19] CNRS, UMR 7095, Inst Astrophys Paris, 98 Bis Bd Arago, F-75014 Paris, France
[20] Max Planck Inst Extraterr Phys, Giessenbachstr 1, D-85748 Garching, Germany
[21] INAF, Osservatorio Astron Brera, Via Brera 28, I-20122 Milan, Italy
[22] INAF, Osservatorio Astrofis & Sci Spazio Bologna, Via Piero Gobetti 93-3, I-40129 Bologna, Italy
[23] SISSA, Int Sch Adv Studies, Via Bonomea 265, I-34136 Trieste, Italy
[24] INFN, Sez Trieste, Via Valerio 2, I-34127 Trieste, TS, Italy
[25] INAF, Osservatorio Astron Trieste, Via GB Tiepolo 11, I-34131 Trieste, Italy
[26] Univ Laguna, 38206 San Cristobal La Laguna, Tenerife, Spain
[27] Inst Astrofis Canarias, Calle Via Lactea S-N, Tenerife 38204, Spain
[28] Univ Bologna, Dipartimento Fis & Astron, Via Gobetti 93-2, I-40129 Bologna, Italy
[29] INFN, Sez Bologna, Viale Berti Pichat 6-2, I-40127 Bologna, Italy
[30] IFPU, Inst Fundamental Phys Universe, Via Beirut 2, I-34151 Trieste, Italy
[31] INAF, Osservatorio Astrofis Torino, Via Osservatorio 20, I-10025 Pino Torinese, TO, Italy
[32] INFN, Sez Roma Tre, Via Vasca Navale 84, I-00146 Rome, Italy
[33] Roma Tre Univ, Dept Math & Phys, Via Vasca Navale 84, I-00146 Rome, Italy
[34] Univ Porto, CAUP, Inst Astrofis & Ciencias Espaco, Rua Estrelas, P-4150762 Porto, Portugal
[35] Univ Ferrara, Dipartimento Fis & Sci Terra, Via Giuseppe Saragat 1, I-44122 Ferrara, Italy
[36] INAF, Ist Radioastron, Via Piero Gobetti 101, I-40129 Bologna, Italy
[37] Univ Toulouse, Inst Rech Astrophys & Planetol IRAP, CNRS, UPS,CNES, 14 Ave Edouard Belin, F-31400 Toulouse, France
[38] INFN, Sez Torino, Via P Giuria 1, I-10125 Turin, Italy
[39] Univ Torino, Dipartimento Fis, Via P Giuria 1, I-10125 Turin, Italy
[40] Univ Cote dAzur, Observ Cote dAzur, CNRS, Lab Lagrange, Bd Observ,CS 34229, F-06304 Nice 4, France
[41] INAF, IASF Milano, Via Alfonso Corti 12, I-20133 Milan, Italy
[42] Barcelona Inst Sci & Technol, Inst Fis Altes Energies IFAE, Campus UAB, Barcelona 08193, Spain
[43] Univ Lisbon, Fac Ciencias, Inst Astrofis & Ciencias Espaco, P-1349018 Lisbon, Portugal
[44] CSIC, Inst Space Sci ICE, Campus UAB,Carrer Can Magrans S-N, Barcelona 08193, Spain
[45] Inst Estudis Espacials Catalunya IEEC, Barcelona 08034, Spain
[46] Univ Paris Diderot, Univ Paris Saclay, Sorbonne Paris Cite, AIM,CEA,CNRS, F-91191 Gif Sur Yvette, France
[47] Ecole Polytech Fed Lausanne, Observ Sauverny, CH-1290 Versoix, Switzerland
[48] INAF, Osservatorio Astrofis Arcetri, Largo E Fermi 5, I-50125 Florence, Italy
[49] Ctr Natl Etud Spatiales, Toulouse, France
[50] Univ Edinburgh, Inst Astron, Royal Observ, Blackford Hill, Edinburgh EH9 3HJ, Midlothian, Scotland
基金
瑞士国家科学基金会; 美国国家航空航天局;
关键词
galaxies: distances and redshifts; surveys; techniques: miscellaneous; catalogs; PROBABILITY DENSITY-ESTIMATION; TELESCOPE ADVANCED CAMERA; COSMOS; EVOLUTION; MACHINE; PREDICTION; EMISSION;
D O I
10.1051/0004-6361/202039403
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Forthcoming large photometric surveys for cosmology require precise and accurate photometric redshift (photo-z) measurements for the success of their main science objectives. However, to date, no method has been able to produce photo-zs at the required accuracy using only the broad-band photometry that those surveys will provide. An assessment of the strengths and weaknesses of current methods is a crucial step in the eventual development of an approach to meet this challenge. We report on the performance of 13 photometric redshift code single value redshift estimates and redshift probability distributions (PDZs) on a common set of data, focusing particularly on the 0.2-2.6 redshift range that the Euclid mission will probe. We designed a challenge using emulated Euclid data drawn from three photometric surveys of the COSMOS field. The data was divided into two samples: one calibration sample for which photometry and redshifts were provided to the participants; and the validation sample, containing only the photometry to ensure a blinded test of the methods. Participants were invited to provide a redshift single value estimate and a PDZ for each source in the validation sample, along with a rejection flag that indicates the sources they consider unfit for use in cosmological analyses. The performance of each method was assessed through a set of informative metrics, using cross-matched spectroscopic and highly-accurate photometric redshifts as the ground truth. We show that the rejection criteria set by participants are efficient in removing strong outliers, that is to say sources for which the photo-z deviates by more than 0.15(1+z) from the spectroscopic-redshift (spec-z). We also show that, while all methods are able to provide reliable single value estimates, several machine-learning methods do not manage to produce useful PDZs. We find that no machine-learning method provides good results in the regions of galaxy color-space that are sparsely populated by spectroscopic-redshifts, for example z> 1. However they generally perform better than template-fitting methods at low redshift (z< 0.7), indicating that template-fitting methods do not use all of the information contained in the photometry. We introduce metrics that quantify both photo-z precision and completeness of the samples (post-rejection), since both contribute to the final figure of merit of the science goals of the survey (e.g., cosmic shear from Euclid). Template-fitting methods provide the best results in these metrics, but we show that a combination of template-fitting results and machine-learning results with rejection criteria can outperform any individual method. On this basis, we argue that further work in identifying how to best select between machine-learning and template-fitting approaches for each individual galaxy should be pursued as a priority.
引用
收藏
页数:24
相关论文
共 85 条
[1]   A comparison of six photometric redshift methods applied to 1.5 million luminous red galaxies [J].
Abdalla, F. B. ;
Banerji, M. ;
Lahav, O. ;
Rashkov, V. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2011, 417 (03) :1891-1903
[2]   First data release of the Hyper Suprime-Cam Subaru Strategic Program [J].
Aihara, Hiroaki ;
Armstrong, Robert ;
Bickerton, Steven ;
Bosch, James ;
Coupon, Jean ;
Furusawa, Hisanori ;
Hayashi, Yusuke ;
Ikeda, Hiroyuki ;
Kamata, Yukiko ;
Karoji, Hiroshi ;
Kawanomoto, Satoshi ;
Koike, Michitaro ;
Komiyama, Yutaka ;
Lang, Dustin ;
Lupton, Robert H. ;
Mineo, Sogo ;
Miyatake, Hironao ;
Miyazaki, Satoshi ;
Morokuma, Tomoki ;
Obuchi, Yoshiyuki ;
Oishi, Yukie ;
Okura, Yuki ;
Price, Paul A. ;
Takata, Tadafumi ;
Tanaka, Manobu M. ;
Tanaka, Masayuki ;
Tanaka, Yoko ;
Uchida, Tomohisa ;
Uraguchi, Fumihiro ;
Utsumi, Yousuke ;
Wang, Shiang-Yu ;
Yamada, Yoshihiko ;
Yamanoi, Hitomi ;
Yasuda, Naoki ;
Arimoto, Nobuo ;
Chiba, Masashi ;
Finet, Francois ;
Fujimori, Hiroki ;
Fujimoto, Seiji ;
Furusawa, Junko ;
Goto, Tomotsugu ;
Goulding, Andy ;
Gunn, James E. ;
Harikane, Yuichi ;
Hattori, Takashi ;
Hayashi, Masao ;
Helminiak, Krzysztof G. ;
Higuchi, Ryo ;
Hikage, Chiaki ;
Ho, Paul T. P. .
PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF JAPAN, 2018, 70
[3]  
Akeson R, 2019, arXiv:1902.05569
[4]   GPZ: non-stationary sparse Gaussian processes for heteroscedastic uncertainty estimation in photometric redshifts [J].
Almosallam, Ibrahim A. ;
Jarvis, Matt J. ;
Roberts, Stephen J. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2016, 462 (01) :726-739
[5]   A sparse Gaussian process framework for photometric redshift estimation [J].
Almosallam, Ibrahim A. ;
Lindsay, Sam N. ;
Jarvis, Matt J. ;
Roberts, Stephen J. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2016, 455 (03) :2387-2401
[6]   Statistical analysis of probability density functions for photometric redshifts through the KiDS-ESO-DR3 galaxies [J].
Amaro, V. ;
Cavuoti, S. ;
Brescia, M. ;
Vellucci, C. ;
Longo, G. ;
Bilicki, M. ;
de Jong, J. T. A. ;
Tortora, C. ;
Radovich, M. ;
Napolitano, N. R. ;
Buddelmeijer, H. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2019, 482 (03) :3116-3134
[7]   Measuring the redshift evolution of clustering: the Hubble Deep Field South [J].
Arnouts, S ;
Moscardini, L ;
Vanzella, E ;
Colombi, S ;
Cristiani, S ;
Fontana, A ;
Giallongo, E ;
Matarrese, S ;
Saracco, P .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2002, 329 (02) :355-366
[8]   Measuring and modelling the redshift evolution of clustering:: the Hubble Deep Field North [J].
Arnouts, S ;
Cristiani, S ;
Moscardini, L ;
Matarrese, S ;
Lucchin, F ;
Fontana, A ;
Giallongo, E .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 1999, 310 (02) :540-556
[9]  
Baum W. A., 1962, IAU S, V15, P390
[10]   SExtractor: Software for source extraction [J].
Bertin, E ;
Arnouts, S .
ASTRONOMY & ASTROPHYSICS SUPPLEMENT SERIES, 1996, 117 (02) :393-404