Microwave Electromagnetic and Absorption Properties of N-Doped Ordered Mesoporous Carbon Decorated with Ferrite Nanoparticles

被引:72
作者
Shen, Guozhu [1 ]
Mei, Buqing [1 ]
Wu, Hongyan [1 ]
Wei, Hongyu [2 ]
Fang, Xumin [3 ]
Xu, Yewen [3 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Sch Phys & Optoelect Engn, Nanjing 210044, Jiangsu, Peoples R China
[2] Nanjing Univ Aeronaut & Astronaut, Coll Mech & Elect Engn, Nanjing 210016, Jiangsu, Peoples R China
[3] Sci & Technol Near Surface Detect Lab, Wuxi 214035, Peoples R China
基金
中国国家自然科学基金;
关键词
LITHIUM-ION BATTERIES; ABSORBING PROPERTIES; HYDROTHERMAL SYNTHESIS; FE NANOPARTICLES; PERFORMANCE; NANOCOMPOSITES; COMPOSITES; NANOTUBES; SPHERE; NICKEL;
D O I
10.1021/acs.jpcc.6b10906
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Lightweight nitrogen-doped ordered mesoporous carbon (NOMC) with high specific surface area and pore volume have been prepared through self-assembly and subsequent heat treatment route. The spherical NOMC particles are decorated with CoFe2O4 nanoparticles via coprecipitation method to enhance their microwave absorption property. The electromagnetic parameters of the NOMC and CoFe2,04/NOMC composites are measured and the microwave reflection loss properties are evaluated in the frequency range of 0.5-18 GHz. The results show that both the real part and imaginary part of permittivity of NOMC totally decline and the real part of permeability increases with the introduction of ferrite. However, the negative values of the imaginary part of the complex permeability appear for the CoFe2O4/NOMC composites, which may be caused by enhanced eddy current effect due to the introduction of ferrite. The reflection loss results exhibit that the CoFe2O4/NOMC composites have excellent microwave absorption performances. The absorption bandwidth less than 10 dB reaches 5.0 GHz (11.9-16.9 GHz) for 40-F/NOMC composite (40 wt % ferrite) with 1.5 mm of thickness and the minimum reflection loss value is up to -38.3 dB at 3.9 GHz for 30-F/NOMC composite with 4.0 mm of thickness. The excellent absorption properties derive from the synergistic effect between dielectric loss of NOMC and magnetic loss of ferrite and better impendence matching at air and ferrite/NOMC composite interface. Thus, the lightweight ferrite/NOMC composites exhibit their great potential as microwave absorbing materials.
引用
收藏
页码:3846 / 3853
页数:8
相关论文
共 51 条
  • [1] EXCHANGE RESONANCE MODELS IN A FERROMAGNETIC SPHERE
    AHARONI, A
    [J]. JOURNAL OF APPLIED PHYSICS, 1991, 69 (11) : 7762 - 7764
  • [2] Ferroferric Oxide/Multiwalled Carbon Nanotube vs Polyaniline/Ferroferric Oxide/Multiwalled Carbon Nanotube Multiheterostructures for Highly Effective Microwave Absorption
    Cao, Mao-Sheng
    Yang, Jian
    Song, Wei-Li
    Zhang, De-Qing
    Wen, Bo
    Jin, Hai-Bo
    Hou, Zhi-Ling
    Yuan, Jie
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2012, 4 (12) : 6949 - 6956
  • [3] Synthesis of Nitrogen-Doped Porous Carbon Nanofibers as an Efficient Electrode Material for Supercapacitors
    Chen, Li-Feng
    Zhang, Xu-Dong
    Liang, Hai-Wei
    Kong, Mingguang
    Guan, Qing-Fang
    Chen, Ping
    Wu, Zhen-Yu
    Yu, Shu-Hong
    [J]. ACS NANO, 2012, 6 (08) : 7092 - 7102
  • [4] The electromagnetic properties and microwave absorption of mesoporous carbon
    Du, Yunchen
    Liu, Tao
    Yu, Bin
    Gao, Haibin
    Xu, Ping
    Wang, Jingyu
    Wang, Xiaohong
    Han, Xijiang
    [J]. MATERIALS CHEMISTRY AND PHYSICS, 2012, 135 (2-3) : 884 - 891
  • [5] Novel microwave dielectric response of Ni/Co-doped manganese dioxides and their microwave absorbing properties
    Duan, Yuping
    Liu, Zhuo
    Jing, Hui
    Zhang, Yahong
    Li, Shuqing
    [J]. JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (35) : 18291 - 18299
  • [6] A Low-Concentration Hydrothermal Synthesis of Biocompatible Ordered Mesoporous Carbon Nanospheres with Tunable and Uniform Size
    Fang, Yin
    Gu, Dong
    Zou, Ying
    Wu, Zhangxiong
    Li, Fuyou
    Che, Renchao
    Deng, Yonghui
    Tu, Bo
    Zhao, Dongyuan
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2010, 49 (43) : 7987 - 7991
  • [7] Synthesis and microwave absorbing properties of highly ordered mesoporous crystalline NiFe2O4
    Gu, Xin
    Zhu, Weimo
    Jia, Chunjiang
    Zhao, Rui
    Schmidt, Wolfgang
    Wang, Yanqin
    [J]. CHEMICAL COMMUNICATIONS, 2011, 47 (18) : 5337 - 5339
  • [8] Facile synthesis and enhanced electromagnetic wave absorption of thorny-like Fe-Ni alloy/ordered mesoporous carbon composite
    Guo, Shaoli
    Wang, Liuding
    Wu, Hongjing
    [J]. ADVANCED POWDER TECHNOLOGY, 2015, 26 (04) : 1250 - 1255
  • [9] 3D graphene-Fe3O4 nanocomposites with high-performance microwave absorption
    Hu, Chuangang
    Mou, Zhongyu
    Lu, Gewu
    Chen, Nan
    Dong, Zelin
    Hu, Minjia
    Qu, Liangti
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2013, 15 (31) : 13038 - 13043
  • [10] Selective preparation and enhanced microwave electromagnetic characteristics of polymorphous ZnO architectures made from a facile one-step ethanediamine-assisted hydrothermal approach
    Hu, Qian
    Tong, Guoxiu
    Wu, Wenhua
    Liu, Fangting
    Qian, Haisheng
    Hong, Danyan
    [J]. CRYSTENGCOMM, 2013, 15 (07): : 1314 - 1323