Geometry and molecular dynamics of the Hamiltonian mean-field model in a magnetic field

被引:4
作者
Araujo, Rubia [1 ]
Miranda Filho, L. H. [2 ]
Santos, Fernando A. N. [1 ,3 ]
Coutinho-Filho, M. D. [4 ]
机构
[1] Univ Fed Pernambuco, Dept Matemat, BR-50670901 Recife, PE, Brazil
[2] Univ Fed Rural Pernambuco, Dept Fis, Rua Manoel Medeiros S-N, BR-52171900 Dois Irmaos, PE, Brazil
[3] Vrije Univ Amsterdam, Amsterdam Neurosci, Amsterdam UMC, Dept Anat & Neurosci, NL-1081 HZ Amsterdam, Netherlands
[4] Univ Fed Pernambuco, Dept Fis, Lab Fis Teor & Comp, BR-50670901 Recife, PE, Brazil
关键词
LYAPUNOV EXPONENTS; PHASE-TRANSITIONS; INSTABILITY; SYSTEM;
D O I
10.1103/PhysRevE.103.012203
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The Hamiltonian mean-field model is investigated in the presence of a field. The self-consistent equations for the magnetization and the energy per particle are derived, and the field effect on the caloric curve is presented. The analytical geometric approach to Hamiltonian dynamics, under the hypothesis of quasi-isotropy, allows us to calculate the field effect on the energy-dependent microcanonical mean Ricci curvature and its fluctuations. Notably, the method proved suitable to identify that stable and metastable solutions of the Lyapunov exponent exhibit intriguing distinct curvature behavior very close to the critical point at extremely low field values. In addition, finite-size molecular dynamics (MD) simulations are used to observe the evolution of the magnetization and their components, including the stability properties of the solutions. Most importantly, comparison of finite-size MD calculations of the Lyapunov exponent and related properties with those via the geometric approach unveil the sensible dependence of these microcanonical quantities on energy, number of particles, and field, before a quasisaturation behavior at high fields. Finally, relaxation properties from out-of-equilibrium initial conditions are discussed in light of MD simulations.
引用
收藏
页数:10
相关论文
共 42 条
[1]  
[Anonymous], 2008, COMPLEX SYSTEMS, V6802
[2]   CLUSTERING AND RELAXATION IN HAMILTONIAN LONG-RANGE DYNAMICS [J].
ANTONI, M ;
RUFFO, S .
PHYSICAL REVIEW E, 1995, 52 (03) :2361-2374
[3]   Lyapunov exponents as a dynamical indicator of a phase transition [J].
Barré, J ;
Dauxois, T .
EUROPHYSICS LETTERS, 2001, 55 (02) :164-170
[4]  
Benettin A. G. G., 1980, MECCANICA, V15, P9
[5]   PHASE-TRANSITIONS AND LYAPUNOV CHARACTERISTIC EXPONENTS [J].
BUTERA, P ;
CARAVATI, G .
PHYSICAL REVIEW A, 1987, 36 (02) :962-964
[6]   Geometry of dynamics, Lyapunov exponents, and phase transitions [J].
Caiani, L ;
Casetti, L ;
Clementi, C ;
Pettini, M .
PHYSICAL REVIEW LETTERS, 1997, 79 (22) :4361-4364
[7]   Geometry of dynamics and phase transitions in classical lattice φ4 theories [J].
Caiani, L ;
Casetti, L ;
Clementi, C ;
Pettini, G ;
Pettini, M ;
Gatto, R .
PHYSICAL REVIEW E, 1998, 57 (04) :3886-3899
[8]   Riemannian theory of Hamiltonian chaos and Lyapunov exponents [J].
Casetti, L ;
Clementi, C ;
Pettini, M .
PHYSICAL REVIEW E, 1996, 54 (06) :5969-5984
[9]   GAUSSIAN MODEL FOR CHAOTIC INSTABILITY OF HAMILTONIAN FLOWS [J].
CASETTI, L ;
LIVI, R ;
PETTINI, M .
PHYSICAL REVIEW LETTERS, 1995, 74 (03) :375-378
[10]   Geometric approach to Hamiltonian dynamics and statistical mechanics [J].
Casetti, L ;
Pettini, M ;
Cohen, EGD .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2000, 337 (03) :237-341