共 50 条
Acetoacetanilide-functionalized Fe3O4 nanoparticles for selective and cyclic removal of Pb2+ ions from different charged wastewaters
被引:62
|作者:
Sharma, R. K.
[1
]
Puri, Aditi
[1
]
Monga, Yukti
[1
]
Adholeya, Alok
[2
]
机构:
[1] Univ Delhi, Dept Chem, Green Chem Network Ctr, Delhi 110007, India
[2] Energy & Resource Inst, Biotechnol & Management Bioresources Div, New Delhi 110003, India
关键词:
HEAVY-METALS REMOVAL;
AQUEOUS-SOLUTIONS;
PB(II) IONS;
ADSORPTION;
POLYMER;
WATER;
EFFICIENT;
NANOCOMPOSITES;
MICROSPHERES;
EXTRACTION;
D O I:
10.1039/c4ta01815j
中图分类号:
O64 [物理化学(理论化学)、化学物理学];
学科分类号:
070304 ;
081704 ;
摘要:
Efficient, selective and reusable acetoacetanilide-functionalized Fe3O4 nanoparticles were developed for the first time for the removal of Pb2+ ions. A comprehensive characterization of the functionalized nanoparticles, at different levels of synthesis, was carried out by TEM, EDS, XRD, SEM, FT-IR and VSM. The adsorption equilibrium obeyed the Langmuir isotherm model with a maximum enrichment capacity of 392.2 mg g(-1) at 318 K. Pb2+ ions showed quick removal, and the adsorption rate followed pseudosecond-order kinetics. In addition, isotherm and kinetic studies suggested that the adsorption process is controlled by chemical adsorption, involving the complexation of metal ions with the functional groups present on the surface of the functionalized nanoparticles. The thermodynamic analysis revealed that the analyte adsorption is spontaneous, endothermic and energetically driven in nature. Because the superparamagnetism of the Fe3O4 nanoparticles as the magnetic core and silica coat serve as a protective shell, the adsorbent was easily separated and effectively recycled without significant deterioration in its original performance for at least 10 continuous usages. Furthermore, the proposed environmentally benign analytical process was successfully applied for the selective recovery of Pb2+ ions from different charged wastewaters.
引用
收藏
页码:12888 / 12898
页数:11
相关论文