Hydrogen storage capacity of lithium-doped KOH activated carbons

被引:13
作者
Minoda, Ai [1 ,2 ]
Oshima, Shinji [1 ]
Iki, Hideshi [1 ]
Akiba, Etsuo [2 ,3 ]
机构
[1] JX Nippon Oil & Energy Corp, Div Res & Dev, Hydrogen & Fuel Cell Res Lab, Hydrogen R&D Grp,Naka Ku, Yokohama, Kanagawa 2310815, Japan
[2] Kyushu Univ, Fac Mech Engn, Dept Engn, Fukuoka 8190395, Japan
[3] Kyushu Univ, Int Inst Carbon Neutral Energy Res WPI I2CNER, Fukuoka 8190395, Japan
关键词
Hydrogen storage; Carbon materials; POROUS MATERIALS; H-2; STORAGE; ADSORPTION; GRAPHENE;
D O I
10.1016/j.jallcom.2014.04.012
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The authors have studied the hydrogen adsorption performance of several types of lithium-doped KOH activated carbons. In the case of activated cokes, lithium doping improves their hydrogen adsorption affinity from 5.02 kg/m(3) to 5.86 kg/m(3) at 303 K. Hydrogen adsorption density increases by around 17% after lithium doping, likely due to the fact that lithium doping is more effective for materials with micropores of 0.8 nm or smaller. The effects of lithium on hydrogen storage capacity vary depending on the raw material, because the lithium reagent can react with the material and alter the pore structure, indicating that lithium doping has the effect of plugging or filling the micropores and changing the structures of functional groups, resulting in the formation of mesopores. Despite an observed decrease in hydrogen uptake, lithium doping was found to improve hydrogen adsorption affinity. Lithium doping increases hydrogen uptake by optimizing the pore size and functional group composition. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:112 / 116
页数:5
相关论文
共 29 条
[1]   Atypical hydrogen uptake on chemically-activated, ultramicroporous carbon [J].
Bhat, Vinay V. ;
Contescu, Cristian I. ;
Gallego, Nidia C. ;
Baker, Frederick S. .
CARBON, 2010, 48 (05) :1331-1340
[2]  
Boukhvalov DW, 2008, NANO LETT, V8, P4373, DOI [10.1021/nl802234n, 10.1021/nl802098g]
[3]   Hydrogen storage in activated carbons and activated carbon fibers [J].
de la Casa-Lillo, MA ;
Lamari-Darkrim, F ;
Cazorla-Amorós, D ;
Linares-Solano, A .
JOURNAL OF PHYSICAL CHEMISTRY B, 2002, 106 (42) :10930-10934
[4]   Lithium-doped metal-organic frameworks for reversible H2 storage at ambient temperature [J].
Han, Sang Soo ;
Goddard, William A., III .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2007, 129 (27) :8422-+
[5]   Materials for Hydrogen Storage: Past, Present, and Future [J].
Jena, Puru .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2011, 2 (03) :206-211
[6]   Hydrogen adsorption on functionalized graphene [J].
Lamari, F. Darkrim ;
Levesque, D. .
CARBON, 2011, 49 (15) :5196-5200
[7]   Nanoengineered Carbon Scaffolds for Hydrogen Storage [J].
Leonard, Ashley D. ;
Hudson, Jared L. ;
Fan, Hua ;
Booker, Richard ;
Simpson, Lin J. ;
O'Neill, Kevin J. ;
Parilla, Philip A. ;
Heben, Michael J. ;
Pasquali, Matteo ;
Kittrell, Carter ;
Tour, James M. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (02) :723-728
[8]   Understanding chemical reactions between carbons and NaOH and KOH -: An insight into the chemical activation mechanism [J].
Lillo-Ródenas, MA ;
Cazorla-Amorós, D ;
Linares-Solano, A .
CARBON, 2003, 41 (02) :267-275
[9]   HRTEM study of activated carbons prepared by alkali hydroxide activation of anthracite [J].
Lillo-Ródenas, MA ;
Cazorla-Amorós, D ;
Linares-Solano, A ;
Béguin, F ;
Clinard, C ;
Rouzaud, JN .
CARBON, 2004, 42 (07) :1305-1310
[10]   Enhanced Hydrogen Storage on Li-Dispersed Carbon Nanotubes [J].
Liu, W. ;
Zhao, Y. H. ;
Li, Y. ;
Jiang, Q. ;
Lavernia, E. J. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (05) :2028-2033