Analysis of the Voltage Losses in CZTSSe Solar Cells of Varying Sn Content

被引:43
作者
Azzouzi, Mohammed [1 ,2 ]
Cabas-Vidani, Antonio [3 ]
Haass, Stefan G. [3 ]
Rohr, Jason A. [1 ,2 ]
Romanyuk, Yaroslav E. [3 ]
Tiwari, Ayodhya N. [3 ]
Nelson, Jenny [1 ,2 ]
机构
[1] Imperial Coll London, Dept Phys, London SW7 2AZ, England
[2] Imperial Coll London, Ctr Plast Elect, London SW7 2AZ, England
[3] Empa Swiss Fed Labs Mat Sci & Technol, Lab Thin Films & Photovolta, Ueberlandstr 129, CH-8600 Dubendorf, Switzerland
基金
欧盟地平线“2020”; 欧洲研究理事会; 英国工程与自然科学研究理事会;
关键词
EFFICIENCY; ELECTROLUMINESCENCE; CU(IN; GA)SE-2; CU2ZNSNS4; SURFACE; LATTICE;
D O I
10.1021/acs.jpclett.9b00506
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The performance of kesterite (Cu2ZnSn-(S,Se)(4), CZTSSe) solar cells is hindered by low open circuit voltage (V-oc). The commonly used metric for V-oc-deficit, namely, the difference between the absorber band gap and qV(oc) is not well-defined for compositionally complex absorbers like kesterite where the bandgap is hard to determine. Here, nonradiative voltage losses are analyzed by measuring the radiative limit of V-oc, using external quantum efficiency (EQE) and electroluminescence (EL) spectra, without relying on precise knowledge of the bandgap. The method is applied to a series of Cu2ZnSn(S,Se)(4) devices with Sn content variation from 27.6 to 32.9 at. % and a corresponding V-oc range from 423 to 465 mV. Surprisingly, the lowest nonradiative loss, and hence the highest external luminescence efficiency (QE(LED)), were obtained for the device with the lowest V-oc. The trend is assigned to better interface quality between absorber and CdS buffer layer at lower Sn content.
引用
收藏
页码:2829 / +
页数:13
相关论文
共 50 条
[1]   ROOM-TEMPERATURE ELECTROLUMINESCENCE AT WAVELENGTHS OF 5-7-MU-M FROM HGCDTE HETEROSTRUCTURE DIODES [J].
ASHLEY, T ;
ELLIOTT, CT ;
GORDON, NR ;
HALL, RS ;
MAXEY, CD ;
MATTHEWS, BE .
APPLIED PHYSICS LETTERS, 1994, 65 (18) :2314-2316
[2]   Is the Cu/Zn Disorder the Main Culprit for the Voltage Deficit in Kesterite Solar Cells? [J].
Bourdais, Stephane ;
Chone, Christophe ;
Delatouche, Bruno ;
Jacob, Alain ;
Larramona, Gerardo ;
Moisan, Camille ;
Lafond, Alain ;
Donatini, Fabrice ;
Rey, Germain ;
Siebentritt, Susanne ;
Walsh, Aron ;
Dennler, Gilles .
ADVANCED ENERGY MATERIALS, 2016, 6 (12)
[3]   Bandgap of thin film solar cell absorbers: A comparison of various determination methods [J].
Carron, Romain ;
Andres, Christian ;
Avancini, Enrico ;
Feurer, Thomas ;
Nishiwaki, Shiro ;
Pisoni, Stefano ;
Fu, Fan ;
Lingg, Martina ;
Romanyuk, Yaroslav E. ;
Buecheler, Stephan ;
Tiwari, Ayodhya N. .
THIN SOLID FILMS, 2019, 669 :482-486
[4]   Classification of Lattice Defects in the Kesterite Cu2ZnSnS4 and Cu2ZnSnSe4 Earth-Abundant Solar Cell Absorbers [J].
Chen, Shiyou ;
Walsh, Aron ;
Gong, Xin-Gao ;
Wei, Su-Huai .
ADVANCED MATERIALS, 2013, 25 (11) :1522-1539
[5]   Compositional dependence of structural and electronic properties of Cu2ZnSn(S,Se)4 alloys for thin film solar cells [J].
Chen, Shiyou ;
Walsh, Aron ;
Yang, Ji-Hui ;
Gong, X. G. ;
Sun, Lin ;
Yang, Ping-Xiong ;
Chu, Jun-Hao ;
Wei, Su-Huai .
PHYSICAL REVIEW B, 2011, 83 (12)
[6]   Electronic structure and stability of quaternary chalcogenide semiconductors derived from cation cross-substitution of II-VI and I-III-VI2 compounds [J].
Chen, Shiyou ;
Gong, X. G. ;
Walsh, Aron ;
Wei, Su-Huai .
PHYSICAL REVIEW B, 2009, 79 (16)
[7]   Interfaces of high-efficiency kesterite Cu2ZnSnS(e)4 thin film solar cells [J].
Gao, Shoushuai ;
Jiang, Zhenwu ;
Wu, Li ;
Ao, Jianping ;
Zeng, Yu ;
Sun, Yun ;
Zhang, Yi .
CHINESE PHYSICS B, 2018, 27 (01)
[8]   Band tailing and efficiency limitation in kesterite solar cells [J].
Gokmen, Tayfun ;
Gunawan, Oki ;
Todorov, Teodor K. ;
Mitzi, David B. .
APPLIED PHYSICS LETTERS, 2013, 103 (10)
[9]  
Green MA, 2018, PROG PHOTOVOLTAICS, V26, P427, DOI [10.1002/pip.3040, 10.1002/pip.2978]
[10]   Radiative efficiency of state-of-the-art photovoltaic cells [J].
Green, Martin A. .
PROGRESS IN PHOTOVOLTAICS, 2012, 20 (04) :472-476