Entire solutions of reaction-advection-diffusion equations with bistable nonlinearity in cylinders

被引:26
作者
Liu, Nai-Wei [1 ]
Li, Wan-Tong [1 ]
Wang, Zhi-Cheng [1 ]
机构
[1] Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Gansu, Peoples R China
关键词
Entire solution; Reaction-advection-diffusion equation; Traveling wave front; Sub-super solution; Infinite cylinder; NON-LINEAR DIFFUSION; TRAVELING FRONTS; FLAME PROPAGATION; STABILITY; CONVERGENCE; WAVES; EXISTENCE; SPEEDS; MODEL;
D O I
10.1016/j.jde.2008.12.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper deals with entire Solutions and the interaction of traveling wave fronts of bistable reaction-advection-diffusion equation with infinite cylinders. Assume that the equation admits three equilibria: two stable equilibria 0 and 1, and an unstable equilibrium theta. It is well known that there are different wave fronts connecting any two of those three equilibria. By considering a combination of any two of those different traveling wave fronts and constructing appropriate subsolutions and supersolutions, we establish three different types of entire solutions. Finally, we analyze a model for shear flows in cylinders to illustrate our main results. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:4249 / 4267
页数:19
相关论文
共 44 条
[1]  
[Anonymous], 1989, Biomathematics
[2]   MULTIDIMENSIONAL NON-LINEAR DIFFUSION ARISING IN POPULATION-GENETICS [J].
ARONSON, DG ;
WEINBERGER, HF .
ADVANCES IN MATHEMATICS, 1978, 30 (01) :33-76
[3]   Travelling fronts in cylinders and their stability [J].
Bebernes, JW ;
Li, CM ;
Li, Y .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1997, 27 (01) :123-150
[4]   MULTIDIMENSIONAL TRAVELING-WAVE SOLUTIONS OF A FLAME PROPAGATION MODEL [J].
BERESTYCKI, H ;
LARROUTUROU, B ;
LIONS, PL .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1990, 111 (01) :33-49
[5]   STABILITY OF TRAVELING FRONTS IN A MODEL FOR FLAME PROPAGATION .1. LINEAR-ANALYSIS [J].
BERESTYCKI, H ;
LARROUTUROU, B ;
ROQUEJOFFRE, JM .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1992, 117 (02) :97-117
[6]   TRAVELING FRONTS IN CYLINDERS [J].
BERESTYCKI, H ;
NIRENBERG, L .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1992, 9 (05) :497-572
[7]   Front propagation in periodic excitable media [J].
Berestycki, H ;
Hamel, F .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2002, 55 (08) :949-1032
[8]  
BERESTYCKI H, 2003, NATO SCI SER C, V569
[9]  
Berestycki H, 2007, CONTEMP MATH, V446, P101
[10]  
Chen X., 1997, Adv. Differ. Equ., V2, P125, DOI DOI 10.1186/1687-1847-2013-125