Frequent pattern mining on message passing multiprocessor systems

被引:61
|
作者
Javed, A [1 ]
Khokhar, A [1 ]
机构
[1] Univ Illinois, Chicago, IL 60607 USA
基金
美国国家科学基金会;
关键词
frequent pattern mining; parallel processing; association rule; data mining;
D O I
10.1023/B:DAPD.0000031634.19130.bd
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Extraction of frequent patterns in transaction-oriented database is crucial to several data mining tasks such as association rule generation, time series analysis, classification, etc. Most of these mining tasks require multiple passes over the database and if the database size is large, which is usually the case, scalable high performance solutions involving multiple processors are required. This paper presents an efficient scalable parallel algorithm for mining frequent patterns on parallel shared nothing platforms. The proposed algorithm is based on one of the best known sequential techniques referred to as Frequent Pattern (FP) Growth algorithm. Unlike most of the earlier parallel approaches based on different variants of the Apriori Algorithm, the algorithm presented in this paper does not explicitly result in having entire counting data structure duplicated on each processor. Furthermore, the proposed algorithm introduces minimum communication (and hence synchronization) overheads by efficiently partitioning the list of frequent elements list over processors. The experimental results show scalable performance over different machine and problem sizes. The comparison of implementation results with existing parallel approaches show significant gains in the speedup. On an 8-processor machine, we report an average speedup of 6 for different problem sizes.
引用
收藏
页码:321 / 334
页数:14
相关论文
共 50 条
  • [41] Frequent pattern mining algorithms in fog computing environments: A systematic review
    Tehrani, Ahmad Fadaei
    Sharifi, Mahdi
    Rahmani, Amir Masoud
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2022, 34 (24)
  • [42] Community detection in social networks using user frequent pattern mining
    Seyed Ahmad Moosavi
    Mehrdad Jalali
    Negin Misaghian
    Shahaboddin Shamshirband
    Mohammad Hossein Anisi
    Knowledge and Information Systems, 2017, 51 : 159 - 186
  • [43] Clustering-Based Frequent Pattern Mining Framework for Solving Cold-Start Problem in Recommender Systems
    Kannout, Eyad
    Grzegorowski, Marek
    Grodzki, Michal
    Nguyen, Hung Son
    IEEE ACCESS, 2024, 12 : 13678 - 13698
  • [44] An Efficient Frequent Pattern Mining Method and its Parallelization in Transactional Databases
    Fakhrahmad, S. M.
    Dastghaibyfard, Gh.
    JOURNAL OF INFORMATION SCIENCE AND ENGINEERING, 2011, 27 (02) : 511 - 525
  • [45] An Approach for Incremental Frequent Pattern Mining Using Modified Apriori Algorithm
    Thomas, Harsha Sarah
    Victor, Nancy
    RESEARCH JOURNAL OF PHARMACEUTICAL BIOLOGICAL AND CHEMICAL SCIENCES, 2016, 7 (06): : 1049 - 1055
  • [46] Utilizing Frequent Pattern Mining for Solving Cold-Start Problem in Recommender Systems
    Kannout, Eyad
    Grodzki, Michal
    Grzegorowski, Marek
    PROCEEDINGS OF THE 2022 17TH CONFERENCE ON COMPUTER SCIENCE AND INTELLIGENCE SYSTEMS (FEDCSIS), 2022, : 217 - 226
  • [47] Analysis of tree-based uncertain frequent pattern mining techniques without pattern losses
    Lee, Gangin
    Yun, Unil
    Lee, Kyung-Min
    JOURNAL OF SUPERCOMPUTING, 2016, 72 (11) : 4296 - 4318
  • [48] Multi-level Frequent Pattern Mining on Pipeline Incident Data
    Hryhoruk, Connor C. J.
    Leung, Carson K.
    Li, Jingyuan
    Narine, Brandon A.
    Wedel, Felix
    ADVANCED INFORMATION NETWORKING AND APPLICATIONS, VOL 2, AINA 2024, 2024, 200 : 380 - 392
  • [49] Analysis of tree-based uncertain frequent pattern mining techniques without pattern losses
    Gangin Lee
    Unil Yun
    Kyung-Min Lee
    The Journal of Supercomputing, 2016, 72 : 4296 - 4318
  • [50] Customized frequent patterns mining algorithms for enhanced Top-Rank-K frequent pattern mining
    Abdelaal, Areej Ahmad
    Abed, Sa'ed
    Al-Shayeji, Mohammad
    Allaho, Mohammad
    EXPERT SYSTEMS WITH APPLICATIONS, 2021, 169 (169)