Dynamics of the optical solitons for a (2+1)-dimensional nonlinear Schrodinger equation

被引:38
|
作者
Zuo, Da-Wei [1 ]
Jia, Hui-Xian [2 ]
Shan, Dong-Ming [2 ]
机构
[1] Shijiazhuang Tiedao Univ, Dept Math & Phys, Shijiazhuang 050043, Peoples R China
[2] Shijiazhuang Post & Telecommun Tech Coll, Dept Basic, Shijiazhuang 050021, Peoples R China
关键词
Optical solitons; Nonlinear Schrodinger equation; Hermite-Gaussian vortex solitons;
D O I
10.1016/j.spmi.2016.11.051
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
In this paper, a nonlinear Schrodinger equation (NLS) has been studied, which can describe the propagation and interaction of optical solitons in a material with x-directional localized and y-directional nonlocal non-linearities. By the aid of variable separation and transformation, bilinear forms and multi-soliton solutions of the NLS equation are attained. Propagation and interaction of the solitons are discussed. As a special case of the optical solitons, Hermite-Gaussian vortex solitons are studied: the numbers of wave crests are increase with the order of the Hermite polynomial. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:522 / 528
页数:7
相关论文
共 50 条
  • [41] On the dynamics of the (2+1)-dimensional chiral nonlinear Schrodinger model in physics
    Tariq, Kalim U.
    Wazwaz, A. M.
    Kazmi, S. M. Raza
    OPTIK, 2023, 285
  • [42] Dynamics of optical solitons in the fifth-order nonlinear Schrodinger equation
    Feng, Haoxuan
    Wang, Xinyu
    OPTIK, 2022, 264
  • [43] Modulation instability analysis and optical solutions of an extended (2+1)-dimensional perturbed nonlinear Schrodinger equation
    Ali, Karmina K.
    Tarla, Sibel
    Ali, Mohamed R.
    Yusuf, Abdullahi
    RESULTS IN PHYSICS, 2023, 45
  • [44] Some new optical dromions to (2+1)-dimensional nonlinear Schrodinger equation with Kerr law of nonlinearity
    Tariq, K. U.
    Seadawy, Aly R.
    Zainab, H.
    Ashraf, M. A.
    Rizvi, S. T. R.
    OPTICAL AND QUANTUM ELECTRONICS, 2022, 54 (06)
  • [45] Degeneration of solitons for a (2+1)-dimensional BBMB equation in nonlinear dispersive media
    Long-Xing Li
    Zheng-De Dai
    Nonlinear Dynamics, 2022, 109 : 2949 - 2967
  • [46] Degeneration of solitons for a (2+1)-dimensional BBMB equation in nonlinear dispersive media
    Li, Long-Xing
    Dai, Zheng-De
    NONLINEAR DYNAMICS, 2022, 109 (04) : 2949 - 2967
  • [47] APPRAISAL OF ANALYTICAL SOLUTIONS FOR (2+1)-DIMENSIONAL NONLINEAR CHIRAL SCHRODINGER EQUATION
    Riaz, Muhammad Bilal
    Awrejcewicz, Jan
    Jhangeer, Adil
    Munawar, Maham
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2022, 30 (05)
  • [48] Strong correlations in a model of a gauged (2+1)-dimensional nonlinear Schrodinger equation
    Protogenov, AP
    JETP LETTERS, 2001, 73 (05) : 255 - 261
  • [49] The structures and interactions of solitary waves in the (2+1)-dimensional nonlinear Schrodinger equation
    Bai, Cheng-Lin
    Zhao, Hong
    Wang, Xiao-Yuan
    NONLINEARITY, 2006, 19 (08) : 1697 - 1712
  • [50] A new approach for solutions of the (2+1)-dimensional cubic nonlinear Schrodinger equation
    Zhi Hongyan
    Zhang Hongqing
    CHAOS SOLITONS & FRACTALS, 2009, 39 (01) : 120 - 129