Dynamics of the optical solitons for a (2+1)-dimensional nonlinear Schrodinger equation

被引:38
作者
Zuo, Da-Wei [1 ]
Jia, Hui-Xian [2 ]
Shan, Dong-Ming [2 ]
机构
[1] Shijiazhuang Tiedao Univ, Dept Math & Phys, Shijiazhuang 050043, Peoples R China
[2] Shijiazhuang Post & Telecommun Tech Coll, Dept Basic, Shijiazhuang 050021, Peoples R China
关键词
Optical solitons; Nonlinear Schrodinger equation; Hermite-Gaussian vortex solitons;
D O I
10.1016/j.spmi.2016.11.051
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
In this paper, a nonlinear Schrodinger equation (NLS) has been studied, which can describe the propagation and interaction of optical solitons in a material with x-directional localized and y-directional nonlocal non-linearities. By the aid of variable separation and transformation, bilinear forms and multi-soliton solutions of the NLS equation are attained. Propagation and interaction of the solitons are discussed. As a special case of the optical solitons, Hermite-Gaussian vortex solitons are studied: the numbers of wave crests are increase with the order of the Hermite polynomial. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:522 / 528
页数:7
相关论文
共 16 条
  • [1] Dipolar condensates confined in a toroidal trap: Ground state and vortices
    Abad, M.
    Guilleumas, M.
    Mayol, R.
    Pi, M.
    Jezek, D. M.
    [J]. PHYSICAL REVIEW A, 2010, 81 (04):
  • [2] Abdullaev F.K., 1989, OPTICAL SOLITONS
  • [3] OBSERVATION OF SPATIAL SOLITONS IN ALGAAS WAVE-GUIDES
    AITCHISON, JS
    ALHEMYARI, K
    IRONSIDE, CN
    GRANT, RS
    SIBBETT, W
    [J]. ELECTRONICS LETTERS, 1992, 28 (20) : 1879 - 1880
  • [4] SOLITON PROPAGATION AND SELF-CONFINEMENT OF LASER-BEAMS BY KERR OPTICAL NON-LINEARITY
    BARTHELEMY, A
    MANEUF, S
    FROEHLY, C
    [J]. OPTICS COMMUNICATIONS, 1985, 55 (03) : 201 - 206
  • [5] CW SELF-FOCUSING AND SELF-TRAPPING OF LIGHT IN SODIUM VAPOR
    BJORKHOL.JE
    ASHKIN, A
    [J]. PHYSICAL REVIEW LETTERS, 1974, 32 (04) : 129 - 132
  • [6] Spatiotemporal Hermite-Gaussian solitons of a (3+1)-dimensional partially nonlocal nonlinear Schrodinger equation
    Dai, Chao-Qing
    Wang, Yu
    Liu, Jiu
    [J]. NONLINEAR DYNAMICS, 2016, 84 (03) : 1157 - 1161
  • [7] Higher-charged vortices in mixed linear-nonlinear circular arrays
    Dong, Liangwei
    Li, Huijun
    Huang, Changming
    Zhong, Shunsheng
    Li, Chunyan
    [J]. PHYSICAL REVIEW A, 2011, 84 (04):
  • [8] Hirota R., 2004, The direct method in soliton theory
  • [9] Soliton topology versus discrete symmetry in optical lattices
    Kartashov, YV
    Ferrando, A
    Egorov, AA
    Torner, L
    [J]. PHYSICAL REVIEW LETTERS, 2005, 95 (12)
  • [10] Solitons, Backlund transformation and Lax pair for a (2+1)-dimensional Broer-Kaup-Kupershmidt system in the shallow water of uniform depth
    Lan, Zhong-Zhou
    Gao, Yi-Tian
    Yang, Jin-Wei
    Su, Chuan-Qi
    Mao, Bing-Qing
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2017, 44 : 360 - 372