Salinity affects microbial activity and soil organic matter content in tidal wetlands

被引:327
作者
Morrissey, Ember M. [1 ]
Gillespie, Jaimie L. [1 ]
Morina, Joseph C. [1 ]
Franklin, Rima B. [1 ]
机构
[1] Virginia Commonwealth Univ, Dept Biol, Richmond, VA 23284 USA
关键词
carbon cycling; decomposition; extracellular enzyme activity; marsh; microbial community structure; saltwater intrusion; sea level rise; EXTRACELLULAR ENZYME-ACTIVITY; DIFFERENT NUTRIENT CONDITIONS; SEA-LEVEL RISE; FRESH-WATER; HUMIC-ACID; PHYSICOCHEMICAL PROPERTIES; COMMUNITY STRUCTURE; ESTUARINE SALINITY; BETA-GLUCOSIDASE; CARBON;
D O I
10.1111/gcb.12431
中图分类号
X176 [生物多样性保护];
学科分类号
090705 ;
摘要
Climate change-associated sea level rise is expected to cause saltwater intrusion into many historically freshwater ecosystems. Of particular concern are tidal freshwater wetlands, which perform several important ecological functions including carbon sequestration. To predict the impact of saltwater intrusion in these environments, we must first gain a better understanding of how salinity regulates decomposition in natural systems. This study sampled eight tidal wetlands ranging from freshwater to oligohaline (0-2 ppt) in four rivers near the Chesapeake Bay (Virginia). To help isolate salinity effects, sites were selected to be highly similar in terms of plant community composition and tidal influence. Overall, salinity was found to be strongly negatively correlated with soil organic matter content (OM%) and C:N, but unrelated to the other studied environmental parameters (pH, redox, and above- and below-ground plant biomass). Partial correlation analysis, controlling for these environmental covariates, supported direct effects of salinity on the activity of carbon-degrading extracellular enzymes (-1, 4-glucosidase, 1, 4--cellobiosidase, -D-xylosidase, and phenol oxidase) as well as alkaline phosphatase, using a per unit OM basis. As enzyme activity is the putative rate-limiting step in decomposition, enhanced activity due to salinity increases could dramatically affect soil OM accumulation. Salinity was also found to be positively related to bacterial abundance (qPCR of the 16S rRNA gene) and tightly linked with community composition (T-RFLP). Furthermore, strong relationships were found between bacterial abundance and/or composition with the activity of specific enzymes (1, 4--cellobiosidase, arylsulfatase, alkaline phosphatase, and phenol oxidase) suggesting salinity's impact on decomposition could be due, at least in part, to its effect on the bacterial community. Together, these results indicate that salinity increases microbial decomposition rates in low salinity wetlands, and suggests that these ecosystems may experience decreased soil OM accumulation, accretion, and carbon sequestration rates even with modest levels of saltwater intrusion.
引用
收藏
页码:1351 / 1362
页数:12
相关论文
共 101 条
[1]   Influence of pH and ionic strength on removal processes of a sedimentary humic acid in a suspension of vermiculite [J].
Abate, G ;
Masini, JC .
COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2003, 226 (1-3) :25-34
[2]   Responses of extracellular enzymes to simple and complex nutrient inputs [J].
Allison, SD ;
Vitousek, PM .
SOIL BIOLOGY & BIOCHEMISTRY, 2005, 37 (05) :937-944
[3]  
[Anonymous], 2004, ELEMENTS NATURE PROP
[4]   Community composition and activity of microbes from saline soils and non-saline soils respond similarly to changes in salinity [J].
Asghar, Hafiz Naeem ;
Setia, Raj ;
Marschner, Petra .
SOIL BIOLOGY & BIOCHEMISTRY, 2012, 47 :175-178
[5]   Global ecological patterns in uncultured Archaea [J].
Auguet, Jean-Christophe ;
Barberan, Albert ;
Casamayor, Emilio O. .
ISME JOURNAL, 2010, 4 (02) :182-190
[6]   Effects of salinity and water level on coastal marshes: an experimental test of disturbance as a catalyst for vegetation change [J].
Baldwin, AH ;
Mendelssohn, IA .
AQUATIC BOTANY, 1998, 61 (04) :255-268
[7]  
Barendregt A., 2009, Tidal Freshwater Wetlands
[8]   Effects of Disturbance Intensity and Frequency on Bacterial Community Composition and Function [J].
Berga, Merce ;
Szekely, Anna J. ;
Langenheder, Silke .
PLOS ONE, 2012, 7 (05)
[9]  
Bianchi TS., 2006, BIOCH ESTUARIES
[10]   THE USE OF AIR-FILLED POROSITY AND INTRINSIC PERMEABILITY TO AIR TO CHARACTERIZE STRUCTURE OF MACROPORE SPACE AND SATURATED HYDRAULIC CONDUCTIVITY OF CLAY SOILS [J].
BLACKWELL, PS ;
RINGROSEVOASE, AJ ;
JAYAWARDANE, NS ;
OLSSON, KA ;
MCKENZIE, DC ;
MASON, WK .
JOURNAL OF SOIL SCIENCE, 1990, 41 (02) :215-228