Kinetic modeling of hydrogen generation over nano-Cu(s)/TiO2 catalyst through photoreforming of alcohols

被引:42
作者
Clarizia, Laura [1 ]
Di Somma, Ilaria [2 ]
Onotri, Luca [3 ]
Andreozzi, Roberto [1 ]
Marotta, Raffaele [1 ]
机构
[1] Univ Napoli Federico II, Dipartimento Ingn Chim Mat & Prod Ind, Ple V Tecchio 80, I-80125 Naples, Italy
[2] CNR, IRC, Ple V Tecchio 80, I-80125 Naples, Italy
[3] Univ Napoli Federico II, Ctr Interdipartimentale Ric Ambiente, Via Mezzocannone 16, I-80136 Naples, Italy
关键词
Nano-photocatalytic materials; Catalytic photoreforming; Sacrificial photocatalysis; Hydrogen production; Kinetic modeling; Copper modified-TiO2; FORMIC-ACID; PHOTOCATALYTIC OXIDATION; TIO2; SUSPENSIONS; WATER; NANOPARTICLES; FORMALDEHYDE; POLLUTANTS; METHANOL; BIOMASS; SURFACE;
D O I
10.1016/j.cattod.2016.05.053
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
The production of hydrogen by photocatalytic reforming of methanol and glycerol was investigated using metal copper-modified TiO2 nanoparticles, prepared "in situ" by reduction of cupric ions. A modeling investigation was performed through the development of a simplified kinetic model taking into account the mass balance equations for the main reactive species involved in the photocatalytic system. The kinetic model was tested to predict hydrogen generation rates for experimental runs carried out at different initial concentrations of sacrificial agent (methanol and glycerol) and at varying photocatalyst load. The modeling investigation allowed to estimate for the first time the equilibrium adsorption constants and the kinetic constant for the hole-capture by sacrificial agents, as well as the quantum yield and the rate constant of electron-hole recombination for the copper modified-TiO2 nano-photocatalyst. This study provide a reliable approach to model photocatalytic reforming of alcohols over metal modified-TiO2 catalyst for hydrogen generation. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:117 / 123
页数:7
相关论文
共 34 条
[21]   OH surface density of SiO2 and TiO2 by thermogravimetric analysis [J].
Mueller, R ;
Kammler, HK ;
Wegner, K ;
Pratsinis, SE .
LANGMUIR, 2003, 19 (01) :160-165
[22]   Hydrogen production from renewable sources: biomass and photocatalytic opportunities [J].
Navarro, R. M. ;
Sanchez-Sanchez, M. C. ;
Alvarez-Galvan, M. C. ;
del Valle, F. ;
Fierro, J. L. G. .
ENERGY & ENVIRONMENTAL SCIENCE, 2009, 2 (01) :35-54
[23]   An overview of hydrogen production from biomass [J].
Ni, M ;
Leung, DYC ;
Leung, MKH ;
Sumathy, K .
FUEL PROCESSING TECHNOLOGY, 2006, 87 (05) :461-472
[24]   A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production [J].
Ni, Meng ;
Leung, Michael K. H. ;
Leung, Dennis Y. C. ;
Sumathy, K. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2007, 11 (03) :401-425
[25]   Kinetics and mechanism of glycerol photo-oxidation and photo-reforming reactions in aqueous TiO2 and Pt/TiO2 suspensions [J].
Panagiotopoulou, Paraskevi ;
Karamerou, Eleni E. ;
Kondarides, Dimitris I. .
CATALYSIS TODAY, 2013, 209 :91-98
[26]   Physical and photocatalytic properties of zinc ferrite doped titania under visible light irradiation [J].
Ping, C ;
Wei, L ;
Zhou, TL ;
Jin, YP ;
Gu, MY .
JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY, 2004, 168 (1-2) :97-101
[27]  
Puga A.V., 2016, COORD CHEM IN PRESS
[28]   Production of H2 by Ethanol Photoreforming on Au/TiO2 [J].
Puga, Alberto V. ;
Forneli, Amparo ;
Garcia, Hermenegildo ;
Corma, Avelino .
ADVANCED FUNCTIONAL MATERIALS, 2014, 24 (02) :241-248
[29]  
Rossetti Ilenia, 2012, ISRN Chemical Engineering, DOI 10.5402/2012/964936
[30]   Kinetic modeling of partial oxidation of benzyl alcohol in water by means of Fe(III)/O2/UV-solar simulated process [J].
Spasiano, Danilo ;
Marotta, Raffaele ;
Gargano, Immacolata ;
Di Somma, Ilaria ;
Vitiello, Giuseppe ;
D'Errico, Gerardino ;
Andreozzi, Roberto .
CHEMICAL ENGINEERING JOURNAL, 2014, 249 :130-142