Sequential detection of a temporary change in multivariate time series

被引:0
|
作者
Watson, Victor [1 ,2 ]
Septier, Francois [2 ]
Armand, Patrick [1 ]
Duchenne, Christophe [1 ]
机构
[1] CEA, DIF, DAM, F-91297 Arpajon, France
[2] Univ Bretagne Sud, CNRS UMR 6205, LMBA, F-56000 Vannes, France
关键词
Sequential detection; Multivariate time series; CUSUM; Temporary event; ALGORITHMS;
D O I
10.1016/j.dsp.2022.103545
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this work, we aim to provide a new and efficient recursive detection method for temporarily monitored signals. Motivated by the case of the propagation of an event over a field of sensors, we assumed that the change in the statistical properties in the monitored signals can only be temporary. Unfortunately, to our best knowledge, existing recursive and simple detection techniques such as the ones based on the cumulative sum (CUSUM) do not consider the temporary aspect of the change in a multivariate time series. In this paper, we propose a novel simple and efficient sequential detection algorithm, named Temporary-Event-CUSUM (TE-CUSUM). By combining with a new adaptive way to aggregate local CUSUM variables from each data stream, we empirically show that the TE-CUSUM has a very good detection rate in the case of an event passing through a field of sensors in a very noisy environment. (C) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] DUMA: Dual Mask for Multivariate Time Series Anomaly Detection
    Pan, Jinwei
    Ji, Wendi
    Zhong, Bo
    Wang, Pengfei
    Wang, Xiaoling
    Chen, Jin
    IEEE SENSORS JOURNAL, 2023, 23 (03) : 2433 - 2442
  • [32] Detection of dynamical systems from noisy multivariate time series
    Asai, Yoshiyuki
    Villa, Alessandro E. P.
    SEMINAR ON STOCHASTIC ANALYSIS, RANDOM FIELDS AND APPLICATIONS V, 2008, 59 : 3 - +
  • [33] BREAK DETECTION IN THE COVARIANCE STRUCTURE OF MULTIVARIATE TIME SERIES MODELS
    Aue, Alexander
    Hormann, Siegfried
    Horvath, Lajos
    Reimherr, Matthew
    ANNALS OF STATISTICS, 2009, 37 (6B): : 4046 - 4087
  • [34] Conditional normalizing flow for multivariate time series anomaly detection
    Guan, Siwei
    He, Zhiwei
    Ma, Shenhui
    Gao, Mingyu
    ISA TRANSACTIONS, 2023, 143 : 231 - 243
  • [35] EAD: An Efficient Anomaly Detection Algorithm for Multivariate Time Series
    Ma, Dehong
    Ding, Bo
    Feng, Dawei
    Liu, Hui
    2021 IEEE 33RD INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI 2021), 2021, : 609 - 613
  • [36] AURORA: A Unified fRamework fOR Anomaly detection on multivariate time series
    Lin Zhang
    Wenyu Zhang
    Maxwell J. McNeil
    Nachuan Chengwang
    David S. Matteson
    Petko Bogdanov
    Data Mining and Knowledge Discovery, 2021, 35 : 1882 - 1905
  • [37] AURORA: A Unified fRamework fOR Anomaly detection on multivariate time series
    Zhang, Lin
    Zhang, Wenyu
    McNeil, Maxwell J.
    Chengwang, Nachuan
    Matteson, David S.
    Bogdanov, Petko
    DATA MINING AND KNOWLEDGE DISCOVERY, 2021, 35 (05) : 1882 - 1905
  • [38] An adversarial contrastive autoencoder for robust multivariate time series anomaly detection
    Yu, Jiahao
    Gao, Xin
    Zhai, Feng
    Li, Baofeng
    Xue, Bing
    Fu, Shiyuan
    Chen, Lingli
    Meng, Zhihang
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 245
  • [39] Hybrid graph transformer networks for multivariate time series anomaly detection
    Gao, Rong
    He, Wei
    Yan, Lingyu
    Liu, Donghua
    Yu, Yonghong
    Ye, Zhiwei
    JOURNAL OF SUPERCOMPUTING, 2024, 80 (01): : 642 - 669
  • [40] Anomaly detection model for multivariate time series based on stochastic Transformer
    Huo W.
    Liang R.
    Li Y.
    Tongxin Xuebao/Journal on Communications, 2023, 44 (02): : 94 - 103