Unique continuation with weak type lower order terms

被引:7
|
作者
Lu, GZ [1 ]
Wolff, T [1 ]
机构
[1] CALTECH,DEPT MATH,PASADENA,CA 91125
基金
美国国家科学基金会;
关键词
unique continuation; elliptic equation; Lorentz norm; Carleman's inequalities;
D O I
10.1023/A:1017989619339
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper proves a unique continuation property for the elliptic differential inequality \Delta u\ less than or equal to A\u\ + B\del u\, where the coefficients A and B ate functions in the Lorentz space with small weak type norm.
引用
收藏
页码:603 / 614
页数:12
相关论文
共 50 条
  • [1] Unique Continuation with Weak Type Lower Order Terms
    Guozhen Lu
    Thomas Wolff
    Potential Analysis, 1997, 7 : 603 - 614
  • [2] UNIQUE CONTINUATION FOR THE HEAT OPERATOR WITH POTENTIALS IN WEAK SPACES
    Jeong, Eunhee
    Lee, Sanghyuk
    Ryu, Jaehyeon
    ANALYSIS & PDE, 2024, 17 (07):
  • [3] UNIQUE CONTINUATION PRINCIPLE FOR HIGH ORDER EQUATIONS OF KORTEWEG-DE VRIES TYPE
    Isaza, Pedro
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2013,
  • [4] The unique continuation property for second order evolution PDEs
    Choulli, Mourad
    PARTIAL DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2021, 2 (05):
  • [5] Strong unique continuation for the higher order fractional Laplacian
    Garcia-Ferrero, Maria Angeles
    Rueland, Angkana
    MATHEMATICS IN ENGINEERING, 2019, 1 (04): : 715 - 774
  • [6] Unique continuation for nonnegative solutions of Schrodinger type inequalities
    De Carli, L
    Hudson, S
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 318 (02) : 467 - 471
  • [7] Unique Continuation Properties for One Dimensional Higher Order Schrodinger Equations
    Huang, Tianxiao
    Huang, Shanlin
    Zheng, Quan
    JOURNAL OF GEOMETRIC ANALYSIS, 2022, 32 (05)
  • [8] Unique continuation property of solutions to general second order elliptic systems
    Honda, Naofumi
    Lin, Ching-Lung
    Nakamura, Gen
    Sasayama, Satoshi
    JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2022, 30 (01): : 5 - 21
  • [9] Unique continuation through hyperplane for higher order parabolic and Schrodinger equations
    Huang, Tianxiao
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2021, 46 (07) : 1372 - 1388
  • [10] A remark on unique continuation
    Yifei Pan
    Thomas Wolff
    The Journal of Geometric Analysis, 1998, 8 (4): : 599 - 604