Difference frequency generation in monolayer MoS2

被引:17
|
作者
Wang, Yadong [1 ,2 ,3 ]
Ghotbi, Masood [4 ]
Das, Susobhan [3 ]
Dai, Yunyun [3 ]
Li, Shisheng [5 ]
Hu, Xuerong [3 ,6 ]
Gan, Xuetao [1 ,2 ]
Zhao, Jianlin [1 ,2 ]
Sun, Zhipei [3 ]
机构
[1] Northwestern Polytech Univ, MOE Key Lab Mat Phys & Chem Extraordinary Condit, Sch Phys Sci & Technol, Xian 710129, Shaanxi, Peoples R China
[2] Northwestern Polytech Univ, Shaanxi Key Lab Opt Informat Technol, Sch Phys Sci & Technol, Xian 710129, Shaanxi, Peoples R China
[3] Aalto Univ, Dept Elect & Nanoengn, FI-00076 Aalto, Finland
[4] Univ Kurdistan, Dept Phys, POB 66177-15175, Sanandaj, Iran
[5] Int Ctr Young Scientists ICYS, Natl Inst Mat Sci NIMS, Tsukuba, Ibaraki, Japan
[6] Northwest Univ, Inst Photon & Photon Technol, Xian 710069, Peoples R China
基金
芬兰科学院; 中国国家自然科学基金; 欧盟地平线“2020”;
关键词
BAND;
D O I
10.1039/d0nr01994a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Difference frequency generation has long been employed for numerous applications, such as coherent light generation, sensing and imaging. Here, we demonstrate difference frequency generation down to atomic thickness in monolayer molybdenum disulfide. By mixing femtosecond optical pulses at wavelength of 406 nm with tunable pulses in the spectral range of 1300-1520 nm, we generate tunable pulses across the spectral range of 550-590 nm with frequency conversion efficiency up to similar to 2 x 10(-4). The secondorder nonlinear optical susceptibility of monolayer molybdenum disulfide, chi((2))(eff), is calculated as similar to 1.8 x 10(-8) m V-1, comparable to the previous results demonstrated with second harmonic generation. Such a highly efficient down-conversion nonlinear optical process in two-dimensional layered materials may open new ways to their nonlinear optical applications, such as coherent light generation and amplification.
引用
收藏
页码:19638 / 19643
页数:6
相关论文
共 50 条
  • [41] Exciton Hall effect in monolayer MoS2
    Onga, Masaru
    Zhang, Yijin
    Ideue, Toshiya
    Iwasa, Yoshihiro
    NATURE MATERIALS, 2017, 16 (12) : 1193 - +
  • [42] Hybrid dark excitons in monolayer MoS2
    Liu, Hong
    Pau, Anny
    Efimkin, Dmitry K.
    PHYSICAL REVIEW B, 2021, 104 (16)
  • [43] Gas Sensing Using Monolayer MoS2
    Canton-Vitoria, Ruben
    Tagmatarchis, Nikos
    Sayed-Ahmad-Baraza, Yuman
    Ewels, Chris
    Winterauer, Dominik
    Batten, Tim
    Brunton, Adam
    Nufer, Sebastian
    NANOSCALE MATERIALS FOR WARFARE AGENT DETECTION: NANOSCIENCE FOR SECURITY, 2019, : 71 - 95
  • [44] Nonequilibrium Lattice Dynamics in Monolayer MoS2
    Caruso, Fabio
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2021, 12 (06): : 1734 - 1740
  • [45] Studying of the Biexciton Characteristics in Monolayer MoS2
    Wang, Wenyan
    Sui, Ning
    Ni, Moucui
    Chi, Xiaochun
    Pan, Lingyun
    Zhang, Hanzhuang
    Kang, Zhihui
    Zhou, Qiang
    Wang, Yinghui
    JOURNAL OF PHYSICAL CHEMISTRY C, 2020, 124 (02): : 1749 - 1754
  • [46] Study of the strain effect on the monolayer MoS2
    Deng, Shuo
    Zhang, Yan
    Li, Lijie
    2017 IEEE 17TH INTERNATIONAL CONFERENCE ON NANOTECHNOLOGY (IEEE-NANO), 2017, : 918 - 920
  • [47] Spintronics in MoS2 monolayer quantum wires
    Klinovaja, Jelena
    Loss, Daniel
    PHYSICAL REVIEW B, 2013, 88 (07)
  • [48] Magnetoelectronic and optical properties of a MoS2 monolayer
    Ho, Yen-Hung
    Wang, Yi-Hua
    Chen, Hong-Yi
    PHYSICAL REVIEW B, 2014, 89 (15):
  • [49] Carrier and Polarization Dynamics in Monolayer MoS2
    Lagarde, D.
    Bouet, L.
    Marie, X.
    Zhu, C. R.
    Liu, B. L.
    Amand, T.
    Tan, P. H.
    Urbaszek, B.
    PHYSICAL REVIEW LETTERS, 2014, 112 (04)
  • [50] Photoluminescent Arrays of Nanopatterned Monolayer MoS2
    Han, Grace G. D.
    Tu, Kun-Hua
    Niroui, Farnaz
    Xu, Wenshuo
    Zhou, Si
    Wang, Xiaochen
    Bulovic, Vladimir
    Ross, Caroline A.
    Warner, Jamie H.
    Grossman, Jeffrey C.
    ADVANCED FUNCTIONAL MATERIALS, 2017, 27 (45)