Difference frequency generation in monolayer MoS2

被引:17
|
作者
Wang, Yadong [1 ,2 ,3 ]
Ghotbi, Masood [4 ]
Das, Susobhan [3 ]
Dai, Yunyun [3 ]
Li, Shisheng [5 ]
Hu, Xuerong [3 ,6 ]
Gan, Xuetao [1 ,2 ]
Zhao, Jianlin [1 ,2 ]
Sun, Zhipei [3 ]
机构
[1] Northwestern Polytech Univ, MOE Key Lab Mat Phys & Chem Extraordinary Condit, Sch Phys Sci & Technol, Xian 710129, Shaanxi, Peoples R China
[2] Northwestern Polytech Univ, Shaanxi Key Lab Opt Informat Technol, Sch Phys Sci & Technol, Xian 710129, Shaanxi, Peoples R China
[3] Aalto Univ, Dept Elect & Nanoengn, FI-00076 Aalto, Finland
[4] Univ Kurdistan, Dept Phys, POB 66177-15175, Sanandaj, Iran
[5] Int Ctr Young Scientists ICYS, Natl Inst Mat Sci NIMS, Tsukuba, Ibaraki, Japan
[6] Northwest Univ, Inst Photon & Photon Technol, Xian 710069, Peoples R China
基金
芬兰科学院; 中国国家自然科学基金; 欧盟地平线“2020”;
关键词
BAND;
D O I
10.1039/d0nr01994a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Difference frequency generation has long been employed for numerous applications, such as coherent light generation, sensing and imaging. Here, we demonstrate difference frequency generation down to atomic thickness in monolayer molybdenum disulfide. By mixing femtosecond optical pulses at wavelength of 406 nm with tunable pulses in the spectral range of 1300-1520 nm, we generate tunable pulses across the spectral range of 550-590 nm with frequency conversion efficiency up to similar to 2 x 10(-4). The secondorder nonlinear optical susceptibility of monolayer molybdenum disulfide, chi((2))(eff), is calculated as similar to 1.8 x 10(-8) m V-1, comparable to the previous results demonstrated with second harmonic generation. Such a highly efficient down-conversion nonlinear optical process in two-dimensional layered materials may open new ways to their nonlinear optical applications, such as coherent light generation and amplification.
引用
收藏
页码:19638 / 19643
页数:6
相关论文
共 50 条
  • [11] Plasmons and screening in a monolayer of MoS2
    Scholz, Andreas
    Stauber, Tobias
    Schliemann, John
    PHYSICAL REVIEW B, 2013, 88 (03)
  • [12] Monolayer MoS2 for nanoscale photonics
    Yang, Xianguang
    Li, Baojun
    NANOPHOTONICS, 2020, 9 (07) : 1557 - 1577
  • [13] Adsorption of radionuclides on the monolayer MoS2
    Zhao, Qiang
    Zhang, Zheng
    Ouyang, Xiaoping
    MATERIALS RESEARCH EXPRESS, 2018, 5 (04):
  • [14] Nanoindentation on Monolayer MoS2 Kirigami
    Wang, Beibei
    Nakano, Aiichiro
    Vashishta, Priya D.
    Kalia, Rajiv K.
    ACS OMEGA, 2019, 4 (06): : 9952 - 9956
  • [15] Andreev reflection in monolayer MoS2
    Majidi, Leyla
    Rostami, Habib
    Asgari, Reza
    PHYSICAL REVIEW B, 2014, 89 (04)
  • [16] Conduction quantization in monolayer MoS2
    Li, T. S.
    CHEMICAL PHYSICS LETTERS, 2016, 663 : 40 - 44
  • [17] Emerging Photoluminescence in Monolayer MoS2
    Splendiani, Andrea
    Sun, Liang
    Zhang, Yuanbo
    Li, Tianshu
    Kim, Jonghwan
    Chim, Chi-Yung
    Galli, Giulia
    Wang, Feng
    NANO LETTERS, 2010, 10 (04) : 1271 - 1275
  • [18] Terahertz conductivity of monolayer MoS2
    Mitra, S.
    Avazpour, L.
    Knezevic, I.
    JOURNAL OF COMPUTATIONAL ELECTRONICS, 2023, 22 (05) : 1319 - 1326
  • [19] Interaction between a gold substrate and monolayer MoS2: An azimuthal-dependent sum frequency generation study
    Yang, Tao
    Pollmann, Erik
    Sleziona, Stephan
    Hasselbrink, Eckart
    Kratzer, Peter
    Schleberger, Marika
    Campen, R. Kramer
    Tong, Yujin
    PHYSICAL REVIEW B, 2023, 107 (15)
  • [20] Unconventional electroabsorption in monolayer MoS2
    Vella, D.
    Ovchinnikov, D.
    Martino, N.
    Vega-Mayoral, V.
    Dumcenco, D.
    Kung, Y-C
    Antognazza, M-R
    Kis, A.
    Lanzani, G.
    Mihailovic, D.
    Gadermaier, C.
    2D MATERIALS, 2017, 4 (02):