NUMERICAL SIMULATION OF NATURAL CONVECTION IN SOLAR CAVITY RECEIVERS

被引:0
作者
Yuan, James K. [1 ]
Ho, Clifford K. [1 ]
Christian, Joshua M. [1 ]
机构
[1] Sandia Natl Labs, Concentrating Solar Technol Dept, Albuquerque, NM 87185 USA
来源
PROCEEDINGS OF THE ASME 6TH INTERNATIONAL CONFERENCE ON ENERGY SUSTAINABILITY - 2012, PTS A AND B | 2012年
关键词
D O I
暂无
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Cavity receivers used in solar power towers and dish concentrators may lose considerable energy by natural convection, which reduces the overall system efficiency. A validated numerical receiver model is desired to better understand convection processes and aid in heat loss minimization efforts. The purpose of this investigation was to evaluate heat loss predictions using the commercial computational fluid dynamics software packages FLUENT 13.0 and Solid Works Flow Simulation 2011 against experimentally measured heat losses for a heated cubical cavity model [1] and a cylindrical dish receiver model [2]. Agreement within 10% was found between software packages across most simulations. However, simulated convective heat loss was under predicted by 45% for the cubical cavity when experimental wall temperatures were implemented on cavity walls, and 32% when implementing the experimental heat flux from the cavity walls. Convective heat loss from the cylindrical dish receiver model was accurately predicted within experimental uncertainties by both simulation codes using both isothermal and constant heat flux wall boundary conditions except at inclination angles below 15 and above 75, where losses were under- and over-predicted by FLUENT and SolidWorks, respectively. Comparison with empirical correlations for convective heat loss from heated cavities showed that correlations by Siebers and Kraabel [1] and for an assembly of heated flat plates oriented to the cavity geometry [3] predicted heat losses from the cubical cavity within experimental uncertainties, while correlations by Clausing [4] and Paitoonsurikarn et al. [8] were able to do the same for the cylindrical dish receiver. No single correlation was valid for both receiver models. Different turbulence and air-property models within FLUENT were also investigated and compared in this study.
引用
收藏
页码:281 / 290
页数:10
相关论文
共 8 条
[1]  
[Anonymous], 2010, ANSYS FLUENT USERS G, p[404, 657]
[2]  
[Anonymous], 2008, Inconel Alloy 600. Publication Number SMC-027
[3]  
[Anonymous], 1983, P ASME JSME THERMAL
[4]   NATURAL-CONVECTION FROM ISOTHERMAL CUBICAL CAVITIES WITH A VARIETY OF SIDE-FACING APERTURES [J].
CLAUSING, AM ;
WALDVOGEL, JM ;
LISTER, LD .
JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 1987, 109 (02) :407-412
[5]  
Holman J.P., 2009, Heat transfer
[6]   Numerical Investigation of Natural Convection Loss From Cavity Receivers in Solar Dish Applications [J].
Paitoonsurikarn, S. ;
Lovegrove, K. ;
Hughes, G. ;
Pye, J. .
JOURNAL OF SOLAR ENERGY ENGINEERING-TRANSACTIONS OF THE ASME, 2011, 133 (02)
[7]  
Pitts D.R., 1998, SCHAUMS OUTLINE OF H, P227
[8]   Experimental investigation of natural convection heat loss from a model solar concentrator cavity receiver [J].
Taumoefolau, T ;
Paitoonsurikarn, S ;
Hughes, G ;
Lovegrove, K .
JOURNAL OF SOLAR ENERGY ENGINEERING-TRANSACTIONS OF THE ASME, 2004, 126 (02) :801-807