18F-FDG PET/MR-imaging in a Gottingen Minipig model of atherosclerosis: Correlations with histology and quantitative gene expression

被引:12
|
作者
Ludvigsen, Trine P. [1 ]
Pedersen, Sune F. [2 ,3 ,4 ]
Vegge, Andreas [1 ]
Ripa, Rasmus S. [2 ,3 ,4 ]
Johannesen, Helle H. [2 ,3 ,4 ]
Hansen, Adam E. [2 ,3 ,4 ]
Lofgren, Johan [2 ,3 ,4 ]
Schumacher-Petersen, Camilla [5 ]
Kirk, Rikke K. [1 ]
Pedersen, Henrik D. [5 ,6 ]
Christoffersen, Berit O. [1 ]
Orbaek, Mathilde [2 ,3 ,4 ]
Forman, Julie L. [7 ]
Klausen, Thomas L. [2 ,3 ,4 ]
Olsen, Lisbeth H. [5 ]
Kjaer, Andreas [2 ,3 ,4 ]
机构
[1] Novo Nordisk AS, Global Drug Discovery, Novo Nordisk Pk, DK-2760 Malov, Denmark
[2] Rigshosp, Dept Clin Physiol Nucl Med & PET, Blegdamsvej 9, DK-2100 Copenhagen, Denmark
[3] Rigshosp, Cluster Mol Imaging, Dept Biomed Sci, Blegdamsvej 9, DK-2100 Copenhagen, Denmark
[4] Univ Copenhagen, Blegdamsvej 9, DK-2100 Copenhagen, Denmark
[5] Univ Copenhagen, Dept Vet & Anim Sci, Ridebanevej 9, DK-1870 Frederiksberg, Denmark
[6] Ellegaard Gottingen Minipigs AS, Soro Landevej 302, DK-4261 Dalmose, Denmark
[7] Univ Copenhagen, Dept Publ Hlth, Sect Biostat, Oster Farimagsgade 5, DK-1014 Copenhagen, Denmark
基金
欧盟地平线“2020”; 新加坡国家研究基金会; 欧洲研究理事会;
关键词
ARTERIAL INFLAMMATION; PLAQUE INFLAMMATION; CAROTID PLAQUE; MACROPHAGE; ATHEROMA; HYPOXIA; CLASSIFICATION; REGRESSION; INHIBITOR; DISEASE;
D O I
10.1016/j.atherosclerosis.2019.04.209
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background and aims: The advantage of combining molecular and morphological imaging, e.g. positron emission tomography and magnetic resonance imaging (PET/MRI), is reflected in the increased use of these modalities as surrogate endpoints in clinical trials. This study aimed at evaluating plaque inflammation using F-18-fluorodeoxyglucose (F-18-FDG)-PET/MRI, and gene expression in a minipig model of atherosclerosis. Methods: Gottingen Minipigs were fed for 60 weeks with fat/fructose/cholesterol-rich diet (FFC), chow (Control) or FFC-diet changed to chow midway (diet normalization group; DNO). In all groups, F-18-FDG-PET/MRI of the abdominal aorta was assessed midway and at study-end. The aorta was analyzed using histology and gene expression. Results: At study-end, FFC had significantly higher FDG-uptake compared to Control (target-to-background maximal uptake, TBRMax (95% confidence interval) CITBRMax: 0.092; 7.32) and DNO showed significantly decreased uptake compared to FFC (CITBRMax: -5.94;-0.07). No difference was observed between DNO and Control (CITBRMax: -2.71; 4.11). FFC displayed increased atherosclerosis and gene expression of inflammatory markers, including vascular cell adhesion molecule 1 (VCAM-1), cluster of differentiation 68 (CD68), matrix metalloproteinase 9 (MMP9), cathepsin K (CTSK) and secreted phosphoprotein 1 (SPP1) compared to Control and DNO (all, p < 0.05). FDG-uptake correlated with gene expression of inflammatory markers, including CD68, rho(s)= 0.58; MMP9, rho(s)= 0.46; SPP1, rho(s)=0.44 and CTSK, rho(s)=0.49; (p <= 0.01 for all). Conclusions: In a model of atherosclerosis, F-18-FDG-PET/MRI technology allows for detection of inflammation in atherosclerotic plaques, consistent with increased inflammatory gene expression. Our findings corroborate clinical data and are important in pre-clinical drug development targeting plaque inflammation.
引用
收藏
页码:55 / 63
页数:9
相关论文
共 50 条
  • [31] Cerebrotendinous xanthomatosis with bradyphrenia and psychiatric disorders: a case with 18F-FDG PET imaging and a literature review
    Yu, Shimeng
    Deng, Rong
    Tan, Yang
    Zhang, Yunjian
    EUROPEAN JOURNAL OF PSYCHIATRY, 2016, 30 (01) : 79 - 89
  • [32] Recognition of fibrous dysplasia of bone mimicking skeletal metastasis on 18F-FDG PET/CT imaging
    Su, Ming Gang
    Tian, Rong
    Fan, Qiu Ping
    Tian, Ye
    Li, Fang Lan
    Li, Lin
    Kuang, An Ren
    Miller, John Howard
    SKELETAL RADIOLOGY, 2011, 40 (03) : 295 - 302
  • [33] Brain 18F-FDG and 18F-Flumetamol PET Imaging of Fragile X-Associated Tremor Ataxia Syndrome
    Bacchin, Ruggero
    Salgarello, Matteo
    Trentin, Michela
    Zanette, Giampietro
    Tamburin, Stefano
    CLINICAL NUCLEAR MEDICINE, 2021, 46 (07) : E344 - E346
  • [34] Identification of low variability textural features for heterogeneity quantification of 18F-FDG PET/CT imaging
    Cortes-Rodicio, J.
    Sanchez-Merino, G.
    Garcia-Fidalgo, M. A.
    Tobalina-Larrea, I.
    REVISTA ESPANOLA DE MEDICINA NUCLEAR E IMAGEN MOLECULAR, 2016, 35 (06): : 379 - 384
  • [35] The Role of Delayed 18F-FDG PET Imaging in the Follow-up of Patients with Alveolar Echinococcosis
    Caoduro, Cecile
    Porot, Clemence
    Vuitton, Dominique A.
    Bresson-Hadni, Solange
    Grenouillet, Frederic
    Richou, Carine
    Boulahdour, Hatem
    Blagosklonov, Oleg
    JOURNAL OF NUCLEAR MEDICINE, 2013, 54 (03) : 358 - 363
  • [36] Multimodal Imaging with 18F-FDG PET and Cerenkov Luminescence Imaging After MLN4924 Treatment in a Human Lymphoma Xenograft Model
    Robertson, Robbie
    Germanos, Melissa Saylor
    Manfredi, Mark G.
    Smith, Peter G.
    Silva, Matthew D.
    JOURNAL OF NUCLEAR MEDICINE, 2011, 52 (11) : 1764 - 1769
  • [37] Optimizing 18F-FDG PET/CT imaging of vessel wall inflammation: the impact of 18F-FDG circulation time, injected dose, uptake parameters, and fasting blood glucose levels
    Bucerius, Jan
    Mani, Venkatesh
    Moncrieff, Colin
    Machac, Josef
    Fuster, Valentin
    Farkouh, Michael E.
    Tawakol, Ahmed
    Rudd, James H. F.
    Fayad, Zahi A.
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2014, 41 (02) : 369 - 383
  • [38] Multi-View Separable Pyramid Network for AD Prediction at MCI Stage by 18F-FDG Brain PET Imaging
    Pan, Xiaoxi
    Phan, Trong-Le
    Adel, Mouloud
    Fossati, Caroline
    Gaidon, Thierry
    Wojak, Julien
    Guedj, Eric
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2021, 40 (01) : 81 - 92
  • [39] The value of 18F-FDG PET/CT quantitative indexes in the diagnosis of nondestructive posttransplant lymphoproliferative disorders after pediatric liver transplantation
    Si, Zhuyuan
    Lu, Dongyan
    Zhai, Lili
    Zheng, Weiping
    Dong, Chong
    Sun, Chao
    Wang, Kai
    Zhang, Wei
    Wei, Xinzhe
    Zhang, Zhixin
    Zhao, Shengqiao
    Gao, Wei
    Shen, Zhongyang
    PEDIATRIC TRANSPLANTATION, 2023, 27 (05)
  • [40] A Deep Learning Model to Predict a Diagnosis of Alzheimer Disease by Using 18F-FDG PET of the Brain
    Ding, Yuming
    Sohn, Jae Ho
    Kawczynski, Michael G.
    Trivedi, Hari
    Harnish, Roy
    Jenkins, Nathaniel W.
    Lituiev, Dmytro
    Copeland, Timothy P.
    Aboian, Mariam S.
    Aparici, Carina Mari
    Behr, Spencer C.
    Flavell, Robert R.
    Huang, Shih-Ying
    Zalocusky, Kelly A.
    Nardo, Lorenzo
    Seo, Youngho
    Hawkins, Randall A.
    Pampaloni, Miguel Hernandez
    Hadley, Dexter
    Franc, Benjamin L.
    RADIOLOGY, 2019, 290 (02) : 456 - 464