Error Decomposition of Remote Sensing Soil Moisture Products Based on the Triple-Collocation Method Introducing an Unbiased Reference Dataset: A Case Study on the Tibetan Plateau

被引:5
作者
Kang, Jian [1 ]
Jin, Rui [1 ,2 ]
Li, Xin [2 ,3 ]
Zhang, Yang [1 ]
机构
[1] Chinese Acad Sci, Northwest Inst Ecoenvironm & Resources, Key Lab Remote Sensing Gansu Prov, Heihe Remote Sensing Expt Res Stn, Lanzhou 730000, Peoples R China
[2] CAS Ctr Excellence Tibetan Plateau Earth Sci, Beijing 100101, Peoples R China
[3] Chinese Acad Sci, Inst Tibetan Plateau Res, Beijing 100101, Peoples R China
基金
中国国家自然科学基金;
关键词
error decomposition; random error; remote sensing product; systematic error; soil moisture; triple-collocation; AMSR-E; SATELLITE; ASSIMILATION; ASCAT; SMOS; RESPECT;
D O I
10.3390/rs12183087
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Remote sensing (RS) soil moisture (SM) products have been widely used in various environmental studies. Understanding the error structure of data is necessary to properly apply RS SM products in trend and variation analysis and data fusion. However, a spatially continuous assessment of RS SM datasets is impeded by the limited spatial distribution of ground-based observations. As an alternative, the RS apparent thermal inertia (ATI) data related to the SM are transformed into SM values to expand the validation space. To obtain error components, the ATI-based SM along with the Soil Moisture Active Passive Mission (SMAP) and Advanced Microwave Scanning Radiometer 2 (AMSR2) SM are applied with the triple-collocation (TC) method to evaluate the RS SM data regarding random errors and amplitude variances at the regional scale. When the ATI-based SM is regarded as the reference data, the amplitude biases of the other two datasets are determined. The mean bias is also estimated by calculating the mean value difference between the ATI-based and validated RS SM. The results show that the ATI-based SM is a reliable source of reference data that, when combined with the TC method, can correctly estimate the error structure of RS SM datasets in wide space, promoting the reasonable application and calibration of RS SM datasets.
引用
收藏
页数:12
相关论文
共 38 条
[1]   Global-scale comparison of passive (SMOS) and active (ASCAT) satellite based microwave soil moisture retrievals with soil moisture simulations (MERRA-Land) [J].
Al-Yaari, A. ;
Wigneron, J. -P. ;
Ducharne, A. ;
Kerr, Y. H. ;
Wagner, W. ;
De lannoy, G. ;
Reichle, R. ;
Al Bitar, A. ;
Dorigo, W. ;
Richaume, P. ;
Mialon, A. .
REMOTE SENSING OF ENVIRONMENT, 2014, 152 :614-626
[2]   Global-scale evaluation of two satellite-based passive microwave soil moisture datasets (SMOS and AMSR-E) with respect to Land Data Assimilation System estimates [J].
Al-Yaari, A. ;
Wigneron, J. -P. ;
Ducharne, A. ;
Kerr, Y. ;
de Rosnay, P. ;
de Jeu, R. ;
Govind, A. ;
Al Bitar, A. ;
Albergel, C. ;
Munoz-Sabater, J. ;
Richaume, P. ;
Mialon, A. .
REMOTE SENSING OF ENVIRONMENT, 2014, 149 :181-195
[3]  
[Anonymous], 2016, IEEE T GEOSCI REMOTE, DOI DOI 10.1109/TGRS.2015.2462074
[4]  
[Anonymous], **DATA OBJECT**, DOI DOI 10.5067/EVYDQ32FNWTH
[5]   Soil moisture estimation through ASCAT and AMSR-E sensors: An intercomparison and validation study across Europe [J].
Brocca, L. ;
Hasenauer, S. ;
Lacava, T. ;
Melone, F. ;
Moramarco, T. ;
Wagner, W. ;
Dorigo, W. ;
Matgen, P. ;
Martinez-Fernandez, J. ;
Llorens, P. ;
Latron, J. ;
Martin, C. ;
Bittelli, M. .
REMOTE SENSING OF ENVIRONMENT, 2011, 115 (12) :3390-3408
[6]   A Comparative Study of the SMAP Passive Soil Moisture Product With Existing Satellite-Based Soil Moisture Products [J].
Burgin, Mariko S. ;
Colliander, Andreas ;
Njoku, Eni G. ;
Chan, Steven K. ;
Cabot, Francois ;
Kerr, Yann H. ;
Bindlish, Rajat ;
Jackson, Thomas J. ;
Entekhabi, Dara ;
Yueh, Simon H. .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2017, 55 (05) :2959-2971
[7]   Temporal stability of surface soil moisture in the Little Washita River watershed and its applications in satellite soil moisture product validation [J].
Cosh, MH ;
Jackson, TJ ;
Starks, P ;
Heathman, G .
JOURNAL OF HYDROLOGY, 2006, 323 (1-4) :168-177
[8]   Error characterisation of global active and passive microwave soil moisture datasets [J].
Dorigo, W. A. ;
Scipal, K. ;
Parinussa, R. M. ;
Liu, Y. Y. ;
Wagner, W. ;
de Jeu, R. A. M. ;
Naeimi, V. .
HYDROLOGY AND EARTH SYSTEM SCIENCES, 2010, 14 (12) :2605-2616
[9]   Observation operators for the direct assimilation of TRMM microwave imager retrieved soil moisture [J].
Drusch, M ;
Wood, EF ;
Gao, H .
GEOPHYSICAL RESEARCH LETTERS, 2005, 32 (15)
[10]   An inter-comparison of soil moisture data products from satellite remote sensing and a land surface model [J].
Fang, Li ;
Hain, Christopher R. ;
Zhan, Xiwu ;
Anderson, Martha C. .
INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2016, 48 :37-50