SURE-BASED PARAMETER SELECTION FOR PARALLEL MRI RECONSTRUCTION USING GRAPPA AND SPARSITY

被引:0
作者
Weller, Daniel S. [1 ]
Ramani, Sathish [1 ]
Nielsen, Jon-Fredrik [2 ]
Fessler, Jeffrey A. [1 ,2 ]
机构
[1] Univ Michigan, Dept EECS, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Dept BME, Ann Arbor, MI 48109 USA
来源
2013 IEEE 10TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI) | 2013年
关键词
Parallel imaging; MRI; regularization parameter selection; sparsity; Stein's unbiased risk estimate; Monte-Carlo methods;
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
New methods have been developed for parallel MRI reconstruction combining GRAPPA and sparsity. One impediment to the practical application of such methods is selecting a regularization parameter that acceptably balances the contributions of GRAPPA and sparsity. We propose a broadly applicable Monte-Carlo-based approximation to Stein's unbiased risk estimate (SURE) for a suitable weighted mean-squared error (WMSE) metric. Applying this approximation to predict the WMSE-optimal tuning parameter for sparsity-based reconstruction, we are able to tune our parameter to achieve nearly MSE-optimal performance. In our simulations, we vary the noise level in the simulated data and use our Monte-Carlo method to tune the reconstruction to the noise level automatically.
引用
收藏
页码:954 / 957
页数:4
相关论文
共 47 条
  • [31] Cost-Effectiveness of Patient Selection Using Penumbral-Based MRI for Intravenous Thrombolysis
    Earnshaw, Stephanie R.
    Jackson, Dan
    Farkouh, Ray
    Schwamm, Lee
    STROKE, 2009, 40 (05) : 1710 - 1720
  • [32] CLASSIFICATION OF MRI DATA USING DEEP LEARNING AND GAUSSIAN PROCESS-BASED MODEL SELECTION
    Bertrand, Hadrien
    Perrot, Matthieu
    Ardon, Roberto
    Bloch, Isabelle
    2017 IEEE 14TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2017), 2017, : 745 - 748
  • [33] Joint PET-MRI image reconstruction using a patch-based joint-dictionary prior
    Sudarshan, Viswanath P.
    Egan, Gary F.
    Chen, Zhaolin
    Awate, Suyash P.
    MEDICAL IMAGE ANALYSIS, 2020, 62
  • [34] L1k-t ESPIRiT: Accelerating Dynamic MRI Using Efficient Auto-Calibrated Parallel Imaging and Compressed Sensing Reconstruction
    Claudio Santelli
    Sebastian Kozerke
    Journal of Cardiovascular Magnetic Resonance, 18 (Suppl 1)
  • [35] Phantom-Based Evaluation of Isotropic Reconstruction of 4-D MRI Volumes using Super-Resolution
    Van Reeth, Eric
    Tham, Ivan W. K.
    Tan, Cher Heng
    Poh, Chueh Loo
    PROCEEDINGS OF THE 2013 FOURTH INTERNATIONAL WORKSHOP ON COMPUTATIONAL INTELLIGENCE IN MEDICAL IMAGING (CIMI), 2013, : 6 - 13
  • [36] Direct Patlak Reconstruction From Dynamic PET Data Using the Kernel Method With MRI Information Based on Structural Similarity
    Gong, Kuang
    Cheng-Liao, Jinxiu
    Wang, Guobao
    Chen, Kevin T.
    Catana, Ciprian
    Qi, Jinyi
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2018, 37 (04) : 955 - 965
  • [37] Bladder MRI with deep learning-based reconstruction: a prospective evaluation of muscle invasiveness using VI-RADS
    Zhang, Xinxin
    Wang, Yichen
    Xu, Xiaojuan
    Zhang, Jie
    Sun, Yuying
    Hu, Mancang
    Wang, Sicong
    Li, Yi
    Chen, Yan
    Zhao, Xinming
    ABDOMINAL RADIOLOGY, 2024, 49 (05) : 1615 - 1625
  • [38] Robust atrophy rate measurement in Alzheimer's disease using multi-site serial MRI: Tissue-specific intensity normalization and parameter selection
    Leung, Kelvin K.
    Clarkson, Matthew J.
    Bartlett, Jonathan W.
    Clegg, Shona
    Jack, Clifford R., Jr.
    Weiner, Michael W.
    Fox, Nick C.
    Ourselin, Sebastien
    NEUROIMAGE, 2010, 50 (02) : 516 - 523
  • [39] Accelerated Parameter Mapping of Multiple-Echo Gradient-Echo Data Using Model-Based Iterative Reconstruction
    Zimmermann, Markus
    Abbas, Zaheer
    Dzieciol, Krzysztof
    Shah, N. Jon
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2018, 37 (02) : 626 - 637
  • [40] Parallel comparison of ocular metrics in non-human primates with high myopia by LS900, ultrasonography and MRI-based 3D reconstruction
    Wan, Bo
    Zhang, Xiao
    Qi, Yue
    She, Haicheng
    Wang, Zhaoyang
    Jin, Zi-Bing
    EXPERIMENTAL EYE RESEARCH, 2024, 246