SURE-BASED PARAMETER SELECTION FOR PARALLEL MRI RECONSTRUCTION USING GRAPPA AND SPARSITY

被引:0
作者
Weller, Daniel S. [1 ]
Ramani, Sathish [1 ]
Nielsen, Jon-Fredrik [2 ]
Fessler, Jeffrey A. [1 ,2 ]
机构
[1] Univ Michigan, Dept EECS, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Dept BME, Ann Arbor, MI 48109 USA
来源
2013 IEEE 10TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI) | 2013年
关键词
Parallel imaging; MRI; regularization parameter selection; sparsity; Stein's unbiased risk estimate; Monte-Carlo methods;
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
New methods have been developed for parallel MRI reconstruction combining GRAPPA and sparsity. One impediment to the practical application of such methods is selecting a regularization parameter that acceptably balances the contributions of GRAPPA and sparsity. We propose a broadly applicable Monte-Carlo-based approximation to Stein's unbiased risk estimate (SURE) for a suitable weighted mean-squared error (WMSE) metric. Applying this approximation to predict the WMSE-optimal tuning parameter for sparsity-based reconstruction, we are able to tune our parameter to achieve nearly MSE-optimal performance. In our simulations, we vary the noise level in the simulated data and use our Monte-Carlo method to tune the reconstruction to the noise level automatically.
引用
收藏
页码:954 / 957
页数:4
相关论文
共 47 条
  • [21] Single Image Super Resolution from Compressive Samples using Two Level Sparsity based Reconstruction
    Nath, Aneesh G.
    Nair, Madhu S.
    Rajan, Jeny
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION TECHNOLOGIES, ICICT 2014, 2015, 46 : 1643 - 1652
  • [22] Automated parameter selection for accelerated MRI reconstruction via low-rank modeling of local k-space neighborhoods
    Ilicak, Efe
    Saritas, Emine Ulku
    Cukur, Tolga
    ZEITSCHRIFT FUR MEDIZINISCHE PHYSIK, 2023, 33 (02): : 203 - 219
  • [23] A noise robust image reconstruction using slice aware cycle interpolator network for parallel imaging in MRI
    Kim, Jeewon
    Lee, Wonil
    Kang, Beomgu
    Seo, Hyunseok
    Park, HyunWook
    MEDICAL PHYSICS, 2024, 51 (06) : 4143 - 4157
  • [24] DEEP LEARNING FOR MRI RECONSTRUCTION USING A NOVEL PROJECTION BASED CASCADED NETWORK
    Kocanaogullari, Deniz
    Eksioglu, Ender M.
    2019 IEEE 29TH INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2019,
  • [25] Effect of pulse sequence parameter selection on signal strength in positive-contrast MRI markers for MRI-based prostate postimplant assessment
    Lim, Tze Yee
    Kudchadker, Rajat J.
    Wang, Jihong
    Stafford, R. Jason
    MacLellan, Christopher
    Rao, Arvind
    Ibbott, Geoffrey S.
    Frank, Steven J.
    MEDICAL PHYSICS, 2016, 43 (07) : 4312 - 4322
  • [26] Image reconstruction from sensitivity encoded MRI data using extrapolated iterations of parallel projections onto convex sets
    Samsonov, AA
    Kholmovski, EG
    Johnson, CR
    MEDICAL IMAGING 2003: IMAGE PROCESSING, PTS 1-3, 2003, 5032 : 1829 - 1838
  • [27] DLGAN: Undersampled MRI reconstruction using Deep Learning based Generative Adversarial Network
    Noor, Rida
    Wahid, Abdul
    Bazai, Sibghat Ullah
    Khan, Asad
    Fang, Meie
    Syam, M. S.
    Bhatti, Uzair Aslam
    Ghadi, Yazeed Yasin
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2024, 93
  • [28] Compressed Sensing Undersampled MRI Reconstruction using Iterative Shrinkage Thresholding based on NSST
    Yuan, Min
    BingxinYang
    Ma, Yide
    Zhang, Jiuwen
    Zhang, Runpu
    Zhan, Kun
    2014 IEEE INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING, COMMUNICATIONS AND COMPUTING (ICSPCC), 2014, : 653 - 658
  • [29] Highly accelerated parameter mapping using model-based alternating reconstruction coupling fitting
    Li, Shaohang
    Wang, Lili
    Priest, Andrew N.
    Horvat-Menih, Ines
    Mendichovszky, Iosif A.
    Gallagher, Ferdia A.
    Wang, He
    Li, Hao
    PHYSICS IN MEDICINE AND BIOLOGY, 2024, 69 (14)
  • [30] Image reconstruction of compressed sensing MRI using graph-based redundant wavelet transform
    Lai, Zongying
    Qu, Xiaobo
    Liu, Yunsong
    Guo, Di
    Ye, Jing
    Zhan, Zhifang
    Chen, Zhong
    MEDICAL IMAGE ANALYSIS, 2016, 27 : 93 - 104