SURE-BASED PARAMETER SELECTION FOR PARALLEL MRI RECONSTRUCTION USING GRAPPA AND SPARSITY

被引:0
作者
Weller, Daniel S. [1 ]
Ramani, Sathish [1 ]
Nielsen, Jon-Fredrik [2 ]
Fessler, Jeffrey A. [1 ,2 ]
机构
[1] Univ Michigan, Dept EECS, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Dept BME, Ann Arbor, MI 48109 USA
来源
2013 IEEE 10TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI) | 2013年
关键词
Parallel imaging; MRI; regularization parameter selection; sparsity; Stein's unbiased risk estimate; Monte-Carlo methods;
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
New methods have been developed for parallel MRI reconstruction combining GRAPPA and sparsity. One impediment to the practical application of such methods is selecting a regularization parameter that acceptably balances the contributions of GRAPPA and sparsity. We propose a broadly applicable Monte-Carlo-based approximation to Stein's unbiased risk estimate (SURE) for a suitable weighted mean-squared error (WMSE) metric. Applying this approximation to predict the WMSE-optimal tuning parameter for sparsity-based reconstruction, we are able to tune our parameter to achieve nearly MSE-optimal performance. In our simulations, we vary the noise level in the simulated data and use our Monte-Carlo method to tune the reconstruction to the noise level automatically.
引用
收藏
页码:954 / 957
页数:4
相关论文
共 47 条
  • [11] CORE-Deblur: Parallel MRI Reconstruction by Deblurring using compressed sensing
    Shimron, Efrat
    Webb, Andrew G.
    Azhari, Haim
    MAGNETIC RESONANCE IMAGING, 2020, 72 : 25 - 33
  • [12] Generalized GRAPPA Operators for Wider Spiral Bands: Rapid Self-Calibrated Parallel Reconstruction for Variable Density Spiral MRI
    Lin, Wei
    Boernert, Peter
    Huang, Feng
    Duensing, George R.
    Reykowski, Arne
    MAGNETIC RESONANCE IN MEDICINE, 2011, 66 (04) : 1067 - 1078
  • [13] Adaptive Transform Learning and Joint Sparsity Based PLORAKS Parallel Magnetic Resonance Image Reconstruction
    Duan, Jizhong
    Liu, Chang
    Liu, Yu
    Shang, Zhenhong
    IEEE ACCESS, 2020, 8 : 212315 - 212326
  • [14] KerNL: Kernel-Based Nonlinear Approach to Parallel MRI Reconstruction
    Lyu, Jingyuan
    Nakarmi, Ukash
    Liang, Dong
    Sheng, Jinhua
    Ying, Leslie
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2019, 38 (01) : 312 - 321
  • [15] Non-Learning based Deep Parallel MRI Reconstruction (NLDpMRI)
    Yazdanpanah, Ali Pour
    Afacan, Onur
    Warfield, Simon K.
    MEDICAL IMAGING 2019: IMAGE PROCESSING, 2019, 10949
  • [16] Parameter tuning using asynchronous parallel pattern search in sparse signal reconstruction
    DeGuchy, Omar
    Marcia, Roummel F.
    WAVELETS AND SPARSITY XVIII, 2019, 11138
  • [17] PARALLEL MAGNETIC RESONANCE IMAGING RECONSTRUCTION USING SIMILARITY-BASED REGULARIZATION
    Fang, Sheng
    Ying, Kui
    Cheng, Jianping
    2009 3RD INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICAL ENGINEERING, VOLS 1-11, 2009, : 2028 - 2031
  • [18] Exploiting parameter sparsity in model-based reconstruction to accelerate proton density and T2 mapping
    Peng, Xi
    Liu, Xin
    Zheng, Hairong
    Liang, Dong
    MEDICAL ENGINEERING & PHYSICS, 2014, 36 (11) : 1428 - 1435
  • [19] Accelerated multicontrast reconstruction for synthetic MRI using joint parallel imaging and variable splitting networks
    Ryu, Kanghyun
    Lee, Jae-Hun
    Nam, Yoonho
    Gho, Sung-Min
    Kim, Ho-Sung
    Kim, Dong-Hyun
    MEDICAL PHYSICS, 2021, 48 (06) : 2939 - 2950
  • [20] QR-decomposition based SENSE reconstruction using parallel architecture
    Ullah, Irfan
    Nisar, Habab
    Raza, Haseeb
    Qasim, Malik
    Inam, Omair
    Omer, Hammad
    COMPUTERS IN BIOLOGY AND MEDICINE, 2018, 95 : 1 - 12