Wave Curves: Simulating Lagrangian water waves on dynamically deforming surfaces

被引:8
|
作者
Skrivan, Tomas [1 ]
Soderstrom, Andreas
Johansson, John [2 ]
Sprenger, Christoph [2 ]
Museth, Ken [2 ]
Wojtan, Chris [1 ]
机构
[1] IST Austria, Campus 1, A-3400 Klosterneuburg, Austria
[2] Weta Digital, Wellington, New Zealand
来源
ACM TRANSACTIONS ON GRAPHICS | 2020年 / 39卷 / 04期
基金
欧洲研究理事会;
关键词
Water surface waves; wave animation; production animation; ripples; wakes; dispersion;
D O I
10.1145/3386569.3392466
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We propose a method to enhance the visual detail of a water surface simulation. Our method works as a post-processing step which takes a simulation as input and increases its apparent resolution by simulating many detailed Lagrangian water waves on top of it. We extend linear water wave theory to work in non-planar domains which deform over time, and we discretize the theory using Lagrangian wave packets attached to spline curves. The method is numerically stable and trivially parallelizable, and it produces high frequency ripples with dispersive wave-like behaviors customized to the underlying fluid simulation.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Obstructions to deforming maps from curves to surfaces
    Nishinou, Takeo
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2024, 76 (01) : 51 - 71
  • [2] A Lagrangian wave characteristic method for simulating transient water column separation
    Jung, Bong Seog
    Boulos, Paul F.
    Wood, Don J.
    Bros, Christopher M.
    JOURNAL AMERICAN WATER WORKS ASSOCIATION, 2009, 101 (06): : 64 - +
  • [3] A Semi-Lagrangian Closest Point Method for Deforming Surfaces
    Auer, S.
    Westermann, R.
    COMPUTER GRAPHICS FORUM, 2013, 32 (07) : 207 - 214
  • [4] A Lagrangian particle method for reaction–diffusion systems on deforming surfaces
    Michael Bergdorf
    Ivo F. Sbalzarini
    Petros Koumoutsakos
    Journal of Mathematical Biology, 2010, 61 : 649 - 663
  • [6] A Lagrangian for water waves
    Balk, AM
    PHYSICS OF FLUIDS, 1996, 8 (02) : 416 - 420
  • [7] A Lagrangian particle method for reaction-diffusion systems on deforming surfaces
    Bergdorf, Michael
    Sbalzarini, Ivo F.
    Koumoutsakos, Petros
    JOURNAL OF MATHEMATICAL BIOLOGY, 2010, 61 (05) : 649 - 663
  • [8] Deforming NURBS Surfaces to Target Curves for Immersive VR Sketching
    Kwon, Junghoon
    Lee, Jeongin
    Kim, Harksu
    Jang, Gilsoo
    Chai, Youngho
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2010, E93D (01): : 167 - 175
  • [9] COMPUTATIONAL ASPECTS OF SIMULATING DYNAMICALLY TRIANGULATED RANDOM SURFACES
    BAILLIE, CF
    JOHNSTON, DA
    WILLIAMS, RD
    COMPUTER PHYSICS COMMUNICATIONS, 1990, 58 (1-2) : 105 - 117
  • [10] A Lagrangian model for irregular waves and wave kinematic
    Gjosund, SH
    JOURNAL OF OFFSHORE MECHANICS AND ARCTIC ENGINEERING-TRANSACTIONS OF THE ASME, 2003, 125 (02): : 94 - 102